
SpringOne 2GX 2010. All rights reserved. Do not distribute without permission.

Chicago, October 19 - 22, 2010

Grails + messaging with AMQP/
RabbitMQ

Peter Ledbrook - SpringSource

Friday, 22 October 2010

2

A history of messaging

Friday, 22 October 2010

A history of messaging

Friday, 22 October 2010

A history of messaging

4

Friday, 22 October 2010

Java messaging - JMS

5

• Java API
• Synchronous and asynchronous messaging
• Point-to-point and broadcast

– P2P via Queues
– Broadcast via Topics

• No standard for communication between client and broker

Friday, 22 October 2010

JMS Queues

6

Producer

Broker

Queue Consumer

Friday, 22 October 2010

JMS Topics

7

Producer

Broker

Topic

Consumer

Consumer

Consumer

Friday, 22 October 2010

The challenger - AMQP

8

• Advanced Message Queuing Protocol
• Wire-level protocol

– Any type of client
– Client-broker communication standardised

• Synchronous and asynchronous messaging
• Point-to-point, broadcast, and more

– Single, flexible model
• Simple management part of the protocol

– Create exchanges and queues

Friday, 22 October 2010

Basic structure

9

Producer

Broker

Exchange

Consumer

Consumer

Consumer

Queue

Queue
Consumer

Friday, 22 October 2010

Basic structure

9

Producer

Broker

Exchange

Consumer

Consumer

Consumer

Queue

Queue
Consumer

Exchange: accepts and routes
messages from producer

Friday, 22 October 2010

Basic structure

9

Producer

Broker

Exchange

Consumer

Consumer

Consumer

Queue

Queue
Consumer

Exchange: accepts and routes
messages from producer

Queue: a FIFO queue of
messages - each message can
only go to one consumer

Friday, 22 October 2010

Basic structure

9

Producer

Broker

Exchange

Consumer

Consumer

Consumer

Queue

Queue
Consumer

Exchange: accepts and routes
messages from producer

Binding: rule for routing
messages to associated queue

Queue: a FIFO queue of
messages - each message can
only go to one consumer

Friday, 22 October 2010

Exhanges

10

• Only producers talk to the exchange directly
• Message routing depends on

– Exchange type
– Message’s ‘routing key’, e.g. “stocks.nasdaq.vmw”
– Binding between exchange and queue

• Routing and binding keys are typically strings
– Allow for filtering - similar to JMS selectors

Friday, 22 October 2010

Exhange types

11

• Fanout
– Messages go to all bound queues
– Routing and binding keys are ignored

• Direct
– Messages only go to queues with a binding key that exactly

matches the routing key
– Typically routing key is the queue name

• Topic
– Like Direct exchange but binding key can have wildcards
– ‘#’ like regex ‘*’, ‘*’ like regex ‘?’

• Headers
– Routing based on message headers

Friday, 22 October 2010

Example: JMS-like Queue

12

Producer

Broker

Direct
Exchange ConsumermyQueue

Friday, 22 October 2010

Example: JMS-like Queue

12

Producer

Broker

Direct
Exchange ConsumermyQueue

routing-key = myQueue

Friday, 22 October 2010

Example: JMS-like Queue

12

Producer

Broker

Direct
Exchange ConsumermyQueue

routing-key = myQueue

binding = myQueue

Friday, 22 October 2010

Example: JMS-like Topic

13

Producer

Broker

Fanout
Exchange

Consumer
Queue

ConsumerQueue

Consumer
Queue

Friday, 22 October 2010

Example: JMS-like Topic

13

Producer

Broker

Fanout
Exchange

Consumer
Queue

Routing key not specified

ConsumerQueue

Consumer
Queue

Friday, 22 October 2010

Example: JMS-like Topic

13

Producer

Broker

Fanout
Exchange

Consumer
Queue

Routing key not specified

Binding not specified

ConsumerQueue

Consumer
Queue

Friday, 22 October 2010

Example: broadcast with filtering

14

Producer

Broker

Topic
Exchange

Consumer
Queue

ConsumerQueue

Consumer
Queue

Friday, 22 October 2010

Example: broadcast with filtering

14

Producer

Broker

Topic
Exchange

Consumer
Queue

routing-key = shares.nyse.vmw

ConsumerQueue

Consumer
Queue

Friday, 22 October 2010

Example: broadcast with filtering

14

Producer

Broker

Topic
Exchange

Consumer
Queue

routing-key = shares.nyse.vmw

binding = shares.#

ConsumerQueue

Consumer
Queue

Friday, 22 October 2010

Example: broadcast with filtering

14

Producer

Broker

Topic
Exchange

Consumer
Queue

routing-key = shares.nyse.vmw

ConsumerQueue

Consumer
Queue

binding = shares.*

Friday, 22 October 2010

Example: broadcast with filtering

14

Producer

Broker

Topic
Exchange

Consumer
Queue

routing-key = shares.nyse.vmw

ConsumerQueue

Consumer
Queue

binding = shares.nyse.vmw

Friday, 22 October 2010

Example: RPC

15

Producer

Broker

Direct
Exchange

ConsumermyQueue

replyQ

Friday, 22 October 2010

Example: RPC

15

Producer

Broker

Direct
Exchange

ConsumermyQueue

replyQ
routing-key = myQueue
reply-to = replyQ

Friday, 22 October 2010

Example: RPC

15

Producer

Broker

Direct
Exchange

ConsumermyQueue

binding = myQueue

replyQ
routing-key = myQueue
reply-to = replyQ

Friday, 22 October 2010

Example: RPC

15

Producer

Broker

Direct
Exchange

ConsumermyQueue

replyQ

routing-key = replyQ

Friday, 22 October 2010

Example: RPC

15

Producer

Broker

Direct
Exchange

ConsumermyQueue

replyQ

binding = replyQ

routing-key = replyQ

Friday, 22 October 2010

Example: work distribution

16

Producer

Broker

Direct
Exchange

Consumer

ConsumerQueue

Consumer

Friday, 22 October 2010

Example: work distribution

16

Producer

Broker

Direct
Exchange

Consumer

routing-key = some.task

ConsumerQueue

Consumer

Friday, 22 October 2010

Example: work distribution

16

Producer

Broker

Direct
Exchange

Consumer

routing-key = some.task

binding = some.task

ConsumerQueue

Consumer

Friday, 22 October 2010

Messages

17

• Headers
– routing-key
– reply-to
– content-type, etc.

• Custom properties
• Body

– Byte data
– Producer and consumer must agree on the format of the content
– ... or use content-type header
– AMQP does not define a meaning for content-type!

Friday, 22 October 2010

Queue and exchange properties

18

• Durable
– Survives a broker restart
– Applies to exchanges and queues

• Auto delete
– Exchange will be deleted when all its bindings are gone
– Queue will be deleted when all consumers are gone

• Exclusive
– Only the owner can read messages from the queue
– Doesn’t apply to exchanges

Friday, 22 October 2010

The Grails integration

19

• RabbitMQ plugin
• Declare exchanges and queues
• Configure services as queue consumers

– Simple static properties
• Dynamic method for sending AMQP messages

Friday, 22 October 2010

Consuming messages

20

class ListenerService {
 // Declare name of queue to listen to
 static rabbitQueue = "msgs"

 void handleMessage(msg) {
 // Do something with the message
 }
}

class AnotherListenerService {
 // Subscribe to a topic exchange
 static rabbitSubscribe = "sharesExchange"

 void handleMessage(msg) {
 // Do something with the message
 }
}

Friday, 22 October 2010

Consuming messages

20

class ListenerService {
 // Declare name of queue to listen to
 static rabbitQueue = "msgs"

 void handleMessage(msg) {
 // Do something with the message
 }
}

class AnotherListenerService {
 // Subscribe to a topic exchange
 static rabbitSubscribe = "sharesExchange"

 void handleMessage(msg) {
 // Do something with the message
 }
}

class AnotherListenerService {
 // Subscribe to a topic exchange
 static rabbitSubscribe = [name: "myEx", routingKey: "shares.#"]

 void handleMessage(msg) {
 // Do something with the message
 }
}

Friday, 22 October 2010

class PublisherService {

 def notify() {
 rabbitSend "msgs", "app.event", "The event details"
 }
}

Sending messages

21

Friday, 22 October 2010

class PublisherService {

 def notify() {
 rabbitSend "msgs", "app.event", "The event details"
 }
}

Sending messages

21

Routing key

Exchange name
(optional) Message body

Friday, 22 October 2010

class PublisherService {

 def notify() {
 rabbitSend "msgs", "app.event", "The event details"
 }
}

Sending messages

21

class PublisherService {

 def notify(String itemName) {
 rabbitSend "msgs", "app.event", [event: "publish", item: itemName]
 }
}

Friday, 22 October 2010

Declaring exchanges and queues

22

// Config.groovy
rabbitmq {
 connectionfactory {
 ...
 }

 queues = {
 msgs durable: false, autoDelete: true

 exchange name: "shares", type: topic, durable: true, {
 allShares durable: true, autoDelete: false, binding: 'shares.#'
 }
 }
}

Friday, 22 October 2010

Declaring exchanges and queues

22

// Config.groovy
rabbitmq {
 connectionfactory {
 ...
 }

 queues = {
 msgs durable: false, autoDelete: true

 exchange name: "shares", type: topic, durable: true, {
 allShares durable: true, autoDelete: false, binding: 'shares.#'
 }
 }
}

Standalone queue (msgs) - bound
to default direct exchange

Topic exchange
(shares)

Queue (allShares) bound to exchange
(shares) with routing key ('shares.#')

Friday, 22 October 2010

A word about message content

23

• In the broker, it’s just byte data
• Plugin interprets data based on content-type header

– Spring AMQP SimpleMessageConverter
– String ➝ text/plain; charset=utf-8
– Serializable ➝ application/x-java-serialized-object
– Otherwise, just byte[]

• Producers & consumers typically agree on format
• Not all clients set the content-type!
• You still have to agree on format even if you use JSON or

XML message content

Friday, 22 October 2010

SpringOne 2GX 2009. All rights reserved. Do not distribute without permission.

Chicago, October 19 - 22, 2010

Demo

Friday, 22 October 2010

SpringOne 2GX 2009. All rights reserved. Do not distribute without permission.

Chicago, October 19 - 22, 2010

Q&A

Friday, 22 October 2010

