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Java messaging - JMS
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• Java API
• Synchronous and asynchronous messaging
• Point-to-point and broadcast

– P2P via Queues
– Broadcast via Topics

• No standard for communication between client and broker
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JMS Queues
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JMS Topics
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The challenger - AMQP
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• Advanced Message Queuing Protocol
• Wire-level protocol

– Any type of client
– Client-broker communication standardised

• Synchronous and asynchronous messaging
• Point-to-point, broadcast, and more

– Single, flexible model
• Simple management part of the protocol

– Create exchanges and queues
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Basic structure
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Basic structure
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Exhanges
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• Only producers talk to the exchange directly
• Message routing depends on

– Exchange type
– Message’s ‘routing key’, e.g. “stocks.nasdaq.vmw”
– Binding between exchange and queue

• Routing and binding keys are typically strings
– Allow for filtering - similar to JMS selectors
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Exhange types
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• Fanout
– Messages go to all bound queues
– Routing and binding keys are ignored

• Direct
– Messages only go to queues with a binding key that exactly 

matches the routing key
– Typically routing key is the queue name

• Topic
– Like Direct exchange but binding key can have wildcards
– ‘#’ like regex ‘*’, ‘*’ like regex ‘?’

• Headers
– Routing based on message headers
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Example: JMS-like Queue
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Example: JMS-like Topic
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Example: broadcast with filtering
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Example: RPC
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Example: work distribution
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Messages
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• Headers
– routing-key
– reply-to
– content-type, etc.

• Custom properties
• Body

– Byte data
– Producer and consumer must agree on the format of the content
– ... or use content-type header
– AMQP does not define a meaning for content-type!
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Queue and exchange properties
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• Durable
– Survives a broker restart
– Applies to exchanges and queues

• Auto delete
– Exchange will be deleted when all its bindings are gone
– Queue will be deleted when all consumers are gone

• Exclusive
– Only the owner can read messages from the queue
– Doesn’t apply to exchanges
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The Grails integration
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• RabbitMQ plugin
• Declare exchanges and queues
• Configure services as queue consumers

– Simple static properties
• Dynamic method for sending AMQP messages
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Consuming messages
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class ListenerService {
    // Declare name of queue to listen to
    static rabbitQueue = "msgs"

    void handleMessage(msg) {
        // Do something with the message
    }
}

class AnotherListenerService {
    // Subscribe to a topic exchange
    static rabbitSubscribe = "sharesExchange"

    void handleMessage(msg) {
        // Do something with the message
    }
}
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Consuming messages
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class ListenerService {
    // Declare name of queue to listen to
    static rabbitQueue = "msgs"

    void handleMessage(msg) {
        // Do something with the message
    }
}

class AnotherListenerService {
    // Subscribe to a topic exchange
    static rabbitSubscribe = "sharesExchange"

    void handleMessage(msg) {
        // Do something with the message
    }
}

class AnotherListenerService {
    // Subscribe to a topic exchange
    static rabbitSubscribe = [ name: "myEx", routingKey: "shares.#" ]

    void handleMessage(msg) {
        // Do something with the message
    }
}
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class PublisherService {

    def notify() {
        rabbitSend "msgs", "app.event", "The event details"
    }
}

Sending messages

21
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class PublisherService {
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Routing key

Exchange name
(optional) Message body
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class PublisherService {

    def notify() {
        rabbitSend "msgs", "app.event", "The event details"
    }
}

Sending messages
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class PublisherService {

    def notify(String itemName) {
        rabbitSend "msgs", "app.event", [event: "publish", item: itemName ]
    }
}
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Declaring exchanges and queues
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// Config.groovy
rabbitmq {
    connectionfactory {
        ...
    }

    queues = {
        msgs durable: false, autoDelete: true
        
        exchange name: "shares", type: topic, durable: true, {
            allShares durable: true, autoDelete: false, binding: 'shares.#'
        }
    }
}
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Declaring exchanges and queues
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// Config.groovy
rabbitmq {
    connectionfactory {
        ...
    }

    queues = {
        msgs durable: false, autoDelete: true
        
        exchange name: "shares", type: topic, durable: true, {
            allShares durable: true, autoDelete: false, binding: 'shares.#'
        }
    }
}

Standalone queue (msgs) - bound 
to default direct exchange

Topic exchange 
(shares)

Queue (allShares) bound to exchange 
(shares) with routing key ('shares.#')
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A word about message content
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• In the broker, it’s just byte data
• Plugin interprets data based on content-type header

– Spring AMQP SimpleMessageConverter
– String ➝ text/plain; charset=utf-8
– Serializable ➝ application/x-java-serialized-object
– Otherwise, just byte[]

• Producers & consumers typically agree on format
• Not all clients set the content-type!
• You still have to agree on format even if you use JSON or 

XML message content
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