
19/11/2009 21:16RabbitMQ

Page 1 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Part II

19/11/2009 21:16RabbitMQ

Page 2 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

A Brief Introduction to Erlang/OTP

20 years of history

Erlang is not some PhD student's recent pet project - it was born out of real commercial concerns
20 years ago, and has seen continuous development and commercial use over that time.
Because for the first few years initial deployments were few and all within Ericsson, the
designers of the language had the opportunity and incentive to evolve the language and correct
any mistakes.
Even now the language and platform are still evolving, but in a very controlled way - Ericsson
do eat their own dogfood.

recent surge in interest

Massive growth in community over the last couple of years
probably because of multi-core, grid / cloud, internet

19/11/2009 21:16RabbitMQ

Page 3 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Erlang Processes

fast creation, light-weight
shared nothing
own gc; soft real-time
functional - abstraction, concise code, no mutable vars

Erlang systems are built out of communicating processes. Here's how processes are created ...

19/11/2009 21:16RabbitMQ

Page 4 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Communication and Concurrency

async send, blocking receive with optional timeout
per-process message queue
libs for more complex communication patterns, e.g. call, multi-cast
same code when distributed

19/11/2009 21:16RabbitMQ

Page 5 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

The Open Telecom Platform

Questions?

19/11/2009 21:16RabbitMQ

Page 6 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Why Erlang/OTP?
good architectural fit for AMQP
concise
good performance, and it scales
excellent management and troubleshooting support
we can hide it

19/11/2009 21:16RabbitMQ

Page 7 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Why Erlang/OTP?
good architectural fit for AMQP
concise
good performance, and it scales
excellent management and troubleshooting support
we can hide it

19/11/2009 21:16RabbitMQ

Page 8 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

AMQP architecture (revisited)

concentrate on server for rest of the talk
similarities between structure of client and server, in particular when it comes to protocol
handling

19/11/2009 21:16RabbitMQ

Page 9 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

AMQP architecture (refined)

refine relationship between connection and the channels it carries
introduction of framing - AMQP commands (create queue, delete queue, publish message, etc)
are chopped up into frames for interleaving on transport - useful for e.g. large messages

19/11/2009 21:16RabbitMQ

Page 10 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

RabbitMQ server design

domain of discourse of AMQP is very similar to Erlang/OTP
actual implementation is identical to architecture
each of the nodes corresponds to a separate Erlang module, and process (taking into account the
multiplicities)
only two minor exceptions - mux, which is handled as part of gen_tcp, and mnesia, which is a
collection of processes

19/11/2009 21:16RabbitMQ

Page 11 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Why Erlang/OTP?
good architectural fit for AMQP
concise
good performance, and it scales
excellent management and troubleshooting support
we can hide it

naturalness of the from the AMQP logical architecture to the Erlang-based design of RabbitMQ
mapping results in small, readable codebase where there is a direct correspondence between
AMQP features and code fragments
this makes the code easy to understand, modify and extend - keep up with evolution of spec, try
experimental features, build extensions (recall that this is a major focus for RabbitMQ)

So how small is the code base, really? Here are some stats ...

19/11/2009 21:16RabbitMQ

Page 12 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Look, it is tiny!

from left to right:

networking stack on top of gen_tcp - mostly generic, i.e. not RabbitMQ-specific
reader - dealing with AMQP connection management, demux, error handling
framing channel and writer - codec; mostly auto-generated from spec
channel, amqqueue, exchanges/routing (on top of mnesia) - the AMQP model; bulk of the code

also

clustering - more about that later
persistence - messages can be stored durably on disc and survive broker restarts
management - CLI for administering RabbitMQ
deprecated code is realms and tickets; will disappear from spec soon

summary - ~5000 LOC
but this is not just down to the naturalness of the mapping between the AMQP architecture and
RabbitMQ design. Erlang language features play a big part too. Some examples of that next ...

19/11/2009 21:16RabbitMQ

Page 13 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Binaries
decode_method('basic.publish',
 <<F0:16/unsigned,
 F1Len:8/unsigned, F1:F1Len/binary,
 F2Len:8/unsigned, F2:F2Len/binary,
 F3Bits:8>>) ->
 F3 = (F3Bits band 1) /= 0,
 F4 = (F3Bits band 2) /= 0,
 #'basic.publish'{ticket = F0,
 exchange = F1,
 routing_key = F2,
 mandatory = F3,
 immediate = F4};

This is some of the auto-generated code; decoding an AMQP method frame into an Erlang data
structure

length prefixed strings

It is hard to see how this could be any more concise.

Going the other way - packing terms into a binary blob, rather than unpacking - uses exactly the same
syntax, and is just as smooth.

19/11/2009 21:16RabbitMQ

Page 14 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

List Comprehension and HOF

upmap(F, L) ->
 Parent = self(),
 Ref = make_ref(),
 [receive {Ref, Result} -> Result end
 || _ <- [spawn(fun() -> Parent ! {Ref, F(X)} end)
 || X <- L]].

Functional programming at work
While a lot of code for a presentation, it is not a lot for what it does!
upmap - unordered parallel map

19/11/2009 21:16RabbitMQ

Page 15 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Why Erlang/OTP?
good architectural fit for AMQP
concise
good performance, and it scales
excellent management and troubleshooting support
we can hide it

19/11/2009 21:16RabbitMQ

Page 16 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Exploiting Parallelism

three different areas of parallelism that arise naturually from AMQP and that RabbitMQ is exploiting,
thanks to Erlang's fine-grained parallelism

8-stage pipeline end-to-end between producer and consumer
parallelism across connections and channels - with queues acting as synchronisation points
(queues are about the only stateful part of the core AMQP model)
queues as active processes

19/11/2009 21:16RabbitMQ

Page 17 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Clustering

logical view remains unchanged, but under the covers

multiple nodes share routing information
queues are distributed
messages are routed efficiently between nodes

19/11/2009 21:16RabbitMQ

Page 18 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Why Erlang/OTP?
good architectural fit for AMQP
concise
good performance, and it scales
excellent management and troubleshooting support
we can hide it

for free, almost
the Erlang shell in conjunction with the myriad of OTP tools to inspect, trace, profile, debug,
modify a running system
augmented by our own command line tools

...on to some examples of both...

19/11/2009 21:16RabbitMQ

Page 19 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Where has all the memory gone?
(rabbit@t)1> [{_, Pid} | _] =
 lists:reverse(
 lists:sort(
 [{process_info(P, memory), P}
 || P <- processes()])).
[{{memory,16434364},<0.160.0>}, ...]
(rabbit@t)2> process_info(Pid, dictionary).
{dictionary,
 [{'$ancestors',
 [rabbit_amqqueue_sup,rabbit_sup,<0.106.0>]},
 {'$initial_call',
 {gen,init_it,
 [gen_server,<0.138.0>,<0.138.0>,
 rabbit_amqqueue_process,
 {amqqueue,
 {resource,<<"/">>,queue,<<"test queue">>},
 false,false,[],[],none},
 []]}}]}

just tell the story

19/11/2009 21:16RabbitMQ

Page 20 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Setting up a RabbitMQ cluster
rabbit2$ rabbitmqctl stop_app
Stopping node rabbit@rabbit2 ...done.
rabbit2$ rabbitmqctl reset
Resetting node rabbit@rabbit2 ...done.
rabbit2$ rabbitmqctl cluster rabbit@rabbit1
Clustering node rabbit@rabbit2 with [rabbit@rabbit1] ...
done.
rabbit2$ rabbitmqctl start_app
Starting node rabbit@rabbit2 ...done.

rabbit2$ rabbitmqctl status
Status of node rabbit@rabbit2 ...
[...,
 {nodes,[rabbit@rabbit2,rabbit@rabbit1]},
 {running_nodes,[rabbit@rabbit1,rabbit@rabbit2]}]
done.

don't talk through it

19/11/2009 21:16RabbitMQ

Page 21 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Why Erlang/OTP?
good architectural fit for AMQP
concise
good performance, and it scales
excellent management and troubleshooting support
we can hide it

You do not need to know anything about Erlang to use RabbitMQ

19/11/2009 21:16RabbitMQ

Page 22 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Making Erlang disappear
AMQP is a protocol
AMQP client libraries exist for many languages and are broker neutral
RabbitMQ is packaged for various platforms
admin scripts, log files

two aspects - one to do with the protocol, the other with the operational side
users write client code, typically using one the available broker-neutral libs; they don't need to
care what the server is written in
one still needs to get a server up and running, configure it and look after it. Need to hide Erlang
there too. Hence ...

19/11/2009 21:16RabbitMQ

Page 23 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Why Erlang/OTP? - Summary
good architectural fit for AMQP
concise
good performance, and it scales
excellent management and troubleshooting support
we can hide it

protocol handling is an Erlang/OTP sweet spot

19/11/2009 21:16RabbitMQ

Page 24 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Web messaging & the future
Messaging and queueing are ubiquitous. Everybody's doing it.

Email (SMTP, IMAP/POP3, Mailman, ...)
Feeds (RSS/Atom, AtomPub)
Instant Messaging (XMPP, XEP-60 aka. pubsub)
HTTP, REST, Comet
Web services, CORBA, RPC
Databases and File Systems (SQL, FTP, WebDAV, NFS)
etc. (syslog, ...)

Everybody's doing it; but noone's got it right -- yet.

The same basic ideas of messaging and queueing keep coming up over and over and over again.
There's the problem of idempotency to deal with. There's the problem of ensuring your request is heard
to deal with. There're all of the issues of network failure to deal with. Lots of variations on the theme
are already in wide use -- not just the email infrastructure, but all the tools listed above and more have
been pressed into service as ways of getting messages or lists of work-items delivered between
separate parties.

Building our XMPP-AMQP gateway taught us a lot. We're starting to be able to see the shape of the
essence of messaging.

19/11/2009 21:16RabbitMQ

Page 25 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Messaging at internet scale
Encapsulating state (messaging is fundamentally stateless)

stateless messages
stateful applications

Responsibility transfer
contracts about who is to blame for a lost message; application-level delegation
plan for failure!
QoS and SLAs appear here

State synchronisation
a very common application of messaging
idempotent state updates, or responsibility-transferred non-idempotent updates
metacircular: use it to build efficient responsibility transfer!

Delegation at the application level, not the transport level. This is what SMTP got wrong: relaying is
transport-level delegation. Lifting responsibility-transfer to the application level fixes the issue: the
application (not the transport) makes smart decisions about whether to delegate responsibility or not.

19/11/2009 21:16RabbitMQ

Page 26 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Threefold nature of shared queues
Transfer: "from the ends"; messages in flight ("messaging")
Browsing: "from the side"; messages at rest ("queueing")
Synchronisation makes use of both: uses browsing to build efficient responsible transfer of
messages

19/11/2009 21:16RabbitMQ

Page 27 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Transfer from the ends

19/11/2009 21:16RabbitMQ

Page 28 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Browsing from the side

19/11/2009 21:16RabbitMQ

Page 29 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Responsibility transfer (1/2)

19/11/2009 21:16RabbitMQ

Page 30 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Responsibility transfer (2/2)

19/11/2009 21:16RabbitMQ

Page 31 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Synchronisation

Layering is vital here.

The simplest choice of operations at the low levels assembles to support the next layer
Proper layering makes implementation easy, as well as pinning down corner-cases in the
semantics

19/11/2009 21:16RabbitMQ

Page 32 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

The holy grail (1/3)
AMQP already gets us part-way there:

Transfer (delivery, subscription, responsibility)
Local transactions (grouping, exactly-/atleast-/atmost-once)
Routing (exchanges, filtering, topics)
Buffering (queues, relays)

We want to cleanly integrate the rest:
Browsing (list, get, put, delete)
Internet-sized (global addressing, federation)
Trustable identity (addressing, PKI)
Peer to peer
Management (statistics, resource limits)

WebDAV: and by extension, other (networked) file systems
Some of these things -- duplicate detection, for instance -- are application-level issues; others include the decision about how durably to store messages: persistent storage to disk is an option that can be switched on or off on a per-queue basis
http://wiki.secondlife.com/wiki/Chttp
http://www.mnot.net/drafts/draft-nottingham-http-poe-00.txt

19/11/2009 21:16RabbitMQ

Page 33 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

The holy grail (2/3)

Protocol Injection Browsing Subscription Responsibility
Transfer

Duplicate
detection

Federated /
Global

Peer-to-
peer /
Symmetric
(vs. Client-
Server)

IDEAL Y Y Y Optional Optional Y Y
AMQP Y N [6] Y Y [7] N N Partial [8]
Twitter Y Y Y N ? N N
TCP Y N Y Y Y N Y
XMPP Y N N N [1] N Y Y
Atompub Y Y N Y [3] N Y N
Pubsub Y N Y Partial [4] N Y N
Atom/RSSN Y N N -- Y Y
POE,
CHTTP Y N N Y Y Y N

WebDAV Y Y N Y -- Y N
SMTP Y N N Y N Y N
IMAP Partial Y Y Partial [3] -- N N
Mailman N Y Y N -- N N
POP3 N Y N Partial [3] -- N N
Bittorrent N Y N N Y N N
HTTP N N N Y N Y N
Comet N N N N N N N

Talk about: Resp xfer; federation; peer-to-peer

1 There are XEPs that touch on this area
2 The "offline storage" modules often provided act as a kind of buffer
3 Deletion can act as an acceptance of responsibility
4 There's an acknowledgement for publication only, not delivery
5 Aggregators sort of do this
6 Queue browsing is being worked on in the AMQP WG
7 AMQP 0-10 introduces a form of responsibility transfer
8 0-10's message transfers are quasi-symmetric; the wire-protocol is symmetric; the model is not
9 Management and monitoring is being worked on in the AMQP WG

19/11/2009 21:16RabbitMQ

Page 34 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

The holy grail (3/3)

Protocol Unicast
Routing

Multicast /
Complex
Routing

Relaying Queueing /
Buffering

Presence /
Lifecycle
Events

Management /
Monitoring Trust model

IDEAL Y Y N Y Y Y ???
AMQP Y Y N Y N Y [9] --
Twitter Y Y N Y N -- --
TCP N N N Y N Some --
XMPP Y N N N [2] Y N DNS
Atompub N N N Y N -- --
Pubsub N Y N N N N XMPP
Atom/RSSN N [5] N [5] Y N -- --
POE,
CHTTP N N N N N -- --

WebDAV N N N N N N --
SMTP Y N Implied N N N complicated
IMAP N N N Y N N --
Mailman N Y N N N N --
POP3 N N N Y N N --
Bittorrent N N N N N N --
HTTP N N N N N N --
Comet N N N N N N --

Talk about: relaying; presence

1 There are XEPs that touch on this area
2 The "offline storage" modules often provided act as a kind of buffer
3 Deletion can act as an acceptance of responsibility
4 There's an acknowledgement for publication only, not delivery
5 Aggregators sort of do this
6 Queue browsing is being worked on in the AMQP WG
7 AMQP 0-10 introduces a form of responsibility transfer
8 0-10's message transfers are quasi-symmetric; the wire-protocol is symmetric; the model is not
9 Management and monitoring is being worked on in the AMQP WG

19/11/2009 21:16RabbitMQ

Page 35 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Data languages (1/3)
AMQP's current wire protocols and data languages perform well, but are missing a few features that
will be required as AMQP grows to internet scale.

The ideal data language:

Schemas, type definitions
Abstract syntax essential: different concrete syntaxes useful in different contexts

for optimisation
for scaling down, scaling up, and scaling to the web
for interoperation with "legacy" protocols

Extensibility
Friendly to crypto (canonical form for signability)
Widely-supported protocol already in use: ideal!

Human-readable concrete syntax is a debuggable representation

19/11/2009 21:16RabbitMQ

Page 36 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Data languages (2/3)

LanguageSchemas
Multiple
concrete
syntaxes

Parseable
without
schema

Metacircular Extensible
Unbounded
integers
(bignums)

Good
support
for binary
data

IDEAL Y Optional Y Y Y Y Y
ASN.1 Y Y Y N Y Y Y
Protocol
Buffers Y N Y N [5] Y Y Y

XML Y Y Y Y Y Y N
JSON N N Y N Y Y N
SPKI N N N [2] N Y Y Y
AMQP Y N N N N N Y

1 Ordering of key-value pairs within tables is missing; otherwise, it's more-or-less canonical as it stands
2 The "display type" attached to a byte-string compensates partially for this, but numbers are not distinct from byte-strings
3 SPKI doesn't care what interpretation you place on the bytes it packages
4 XML schemas don't line up with common programming-language data types very well (not even RelaxNG)
5 But it could be!
6 There are good tools, but they're commercial. C and C++ are well served; Java less so; other languages still less so.

19/11/2009 21:16RabbitMQ

Page 37 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Data languages (3/3)

Language
Canonical
form
defined

Multiple
programming-
language
support

In wide
use
already

Unicode
support

"Efficient"
concrete
syntax

Good tools
widely
available
already

Simple to
use,
understand,
implement

IDEAL Y Y Y Y Y Y Y
ASN.1 Y Y Y Y Y N [6] N
Protocol
Buffers N Y Y Y Y Y Y

XML Y Y Y Y N Y N [4]
JSON N Y Y Y N Y Y
SPKI Y Y N N [3] Y N Y
AMQP N [1] Y N Y Y N N

1 Ordering of key-value pairs within tables is missing; otherwise, it's more-or-less canonical as it stands
2 The "display type" attached to a byte-string compensates partially for this, but numbers are not distinct from byte-strings
3 SPKI doesn't care what interpretation you place on the bytes it packages
4 XML schemas don't line up with common programming-language data types very well (not even RelaxNG)
5 But it could be!
6 There are good tools, but they're commercial. C and C++ are well served; Java less so; other languages still less so.

19/11/2009 21:16RabbitMQ

Page 38 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

Learning from XMPP and AMQP
Implementing our XMPP-AMQP gateway provided a good foundation for the preceding analysis.
XMPP and AMQP complement each other: the areas where they differ give strong design and layering
clues.

XMPP has internet-scale addressing and federation
XMPP has a presence model
AMQP mandates a store-and-forward capability
AMQP has programmable routing and filtering (using exchanges and bindings)
AMQP has local transactions and responsibility transfer

19/11/2009 21:16RabbitMQ

Page 39 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

What next for AMQP?
community - wiki, mailing lists, expert involvement
responsibility transfer
management and monitoring
federation and global addressing
encryption, signing, trust and identity

(Conclusion of this segment) We've been looking at the ways messaging is in use on the internet today,
and incorporating those patterns and techniques into the development of RabbitMQ and of AMQP
itself.

19/11/2009 21:16RabbitMQ

Page 40 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

What next for RabbitMQ?
community - wiki, hg, dev list, AMQP
AMQP test suite and interop
modularity - packages and plugins
more clients, adapters, gateways and transports
features - distributed queues, federation, management
features - tracking the AMQP standard
performance improvements and bug fixes

www.rabbitmq.com
RabbitMQ is available; it's in use by customers; grab a copy and try it out! We also have a public
server running; join the mailing list to report any problems or suggestions.

http://www.rabbitmq.com/

19/11/2009 21:16RabbitMQ

Page 41 of 41file:///Users/alexisrichardson/Documents/RABBIT/Presentations/rabbitmq-talks/erlang-exchange/google.html

