
Queue M
ay/June 2007 Vol. 5 No. 4

Linux
Security Sins

Standards-Based
 Middleware

API Design
Matters

Interview:

Stonebraker
and Seltzer

w
w

w
.a

cm
qu

eu
e.

co
m

May/June 2007	

Vol. 5 No. 4

http://www.defyallchallenges.com

Your challenge: create rich, dynamic PC or

mobile apps. Defy it: deliver value, not just

data with Visual Studio® and Windows Vista.TM

More tips and tools at defyallchallenges.com

http://www.defyallchallenges.com

� May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

may/june 2007

API Design Matters 24
Michi Henning, ZeroC
Should the authors of lousy APIs be held accountable
for their crimes?

Toward a Commodity Enterprise Middleware 48
John O’Hara, JPMorgan
A look inside standards-based messaging with AMQP.

The Seven Deadly Sins of Linux Security 38
Bob Toxen, Horizon Network Security

Which ones is your company guilty of?

Vol. 5 no. 4
CONTENTS

features

COVERITY FINDS THE DEADLY
DEFECTS THAT OTHERWISE
GO UNDETECTED.
Your source code is one of your organization’s most valuable assets. How can you be sure there are no

hidden bugs? Coverity offers advanced source code analysis products for the detection of hazardous defects

and security vulnerabilities, which help remove the obstacles to writing and deploying complex software.

With Coverity, catastrophic errors are identified immediately as you write code, assuring the highest possible

code quality—no matter how complex your code base. FREE TRIAL: Let us show you what evil lurks in your

code. Go to www1.coverity.com to request a free trial that will scan your code and identify defects hidden in it.

Reticulitermes Hesperus, or
Subterranean Termite—unchecked,
property damage estimated
at $3 billion per year.
Electron Micrograph, 140X

Your code is either coverity clean—or it’s not.

©
20

0
C

ov
er

ity
,I

nc
.A

ll
rig

ht
s

re
se

rv
ed

.
7

http://www1.coverity.com

� May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

CONTENTS

interview

A Conversation with Michael Stonebraker

 and Margo Seltzer 16

Two generations of the database vanguard discuss SQL,
startups, and stream processing.

departments

KODE VICIOUS 8

KV the Loudmouth
George V. Neville-Neil, Consultant

GEEK@HOME 12

Embracing Wired Networks
Mache Creeger, Emergent Technology Associates

BOOK REVIEWS 56

CALENDAR 58

CURMUDGEON 64

Alloneword
Stan Kelly-Bootle, Author

http://www.blackhat.com

� May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

Editorial Staff

Managing Editor

John Stanik

jstanik@acmqueue.com

Copy Editor

Susan Holly

Art Director

Sharon Reuter

Production Manager

Lynn D’Addesio-Kraus

Editorial Assistant

Michelle Vangen

Copyright

Deborah Cotton

Editorial Advisory Board

Eric Allman

Charles Beeler

Steve Bourne

David J. Brown

Terry Coatta

Mark Compton

Ben Fried

Marshall Kirk McKusick

George Neville-Neil

Sales Staff

National Sales Director

Ginny Pohlman

415-383-0203

gpohlman@acmqueue.com

Regional Eastern Manager

Walter Andrzejewski

207-763-4772

walter@acmqueue.com

Contact Points

Queue editorial

queue-ed@acm.org

Queue advertising

queue-ads@acm.org

Copyright permissions

permissions@acm.org

Queue subscriptions

orders@acm.org

Change of address

acmcoa@acm.org

ACM Headquarters

Executive Director and CEO: John White

Director, ACM U.S. Public Policy Office: Cameron Wilson

Deputy Executive Director and COO: Patricia Ryan

Director, Office of Information Systems: Wayne Graves

Director, Financial Operations Planning: Russell Harris

Director, Office of Membership: Lillian Israel

Director, Office of Publications: Mark Mandelbaum

Deputy Director, Electronic Publishing: Bernard Rous

Deputy Director, Magazine Development: Diane Crawford

Publisher, ACM Books and Journals: Jono Hardjowirogo

Director, Office of SIG Services: Donna Baglio

Assistant Director, Office of SIG Services: Erica Johnson

Executive Committee

President: Stuart Feldman

Vice-President: Wendy Hall

Secretary/Treasurer: Alain Chesnais

Past President: Dave Patterson

Chair, SIG Board: Joseph Konstan

For information from Headquarters: (212) 869-7440

ACM U.S. Public Policy Office: Cameron Wilson, Director

1100 17th Street, NW, Suite 507, Washington, DC 20036 USA

+1-202-659-9711–office, +1-202-667-1066–fax, wilson_c@acm.org

ACM Copyright Notice: Copyright © 2007 by Association for Comput-

ing Machinery, Inc. (ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or com-

mercial advantage and that copies bear this notice and full citation on

the first page. Copyright for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, to republish, to post on servers, or to redistribute to lists,

requires prior specific permission and/or fee. Request permission to repub-

lish from: Publications Dept. ACM, Inc. Fax +1 (212) 869-0481 or e-mail

<permissions@acm.org>

For other copying of articles that carry a code at the bottom of the

first or last page or screen display, copying is permitted provided that the

per-copy fee indicated in the code is paid through the Copyright Clear-

ance Center, 222 Rosewood Drive, Danvers, MA 01923, 508-750-8500,

508-750-4470 (fax).

ACM Queue (ISSN 1542-7730) is published ten times per year by the

ACM, 2 Penn Plaza, Suite 701, New York, NY 10121-0701. POSTMASTER:

Please send address changes to ACM Queue, 2 Penn Plaza, Suite 701,

New York, NY 10121-0701 USA Printed in the U.S.A.

The opinions expressed by ACM Queue authors are their own, and are

not necessarily those of ACM or ACM Queue. Subscription

information available online at www.acmqueue.com.

Publisher

James Maurer

jmaurer@acmqueue.com

Collaboration, diversity, and incubation / industry experts and their
academic peers gathering to improve programming languages,

refine the practice of software development, and explore new paradigms—oopsla’s the
premier conference for innovative and thought-provoking ideas, for seeking comment
on works in progress, and (frequently, we’re proud to say) for presenting Turing Award

lectures on significant works. Contribute to oopsla and you will be enriched
as you enrich the world of software.

It’s not about objects (only)!

March 19, 2007 Submission Deadline for Research Papers, Onward!,
Essays, Practitioner Reports, Educators’ Symposium,
and proposals for Tutorials, Panels, Workshops, and
DesignFest®

July 2, 2007 Submission Deadline for Posters, Demonstrations,
Doctoral Symposium, Onward! Films, Student Research
Competition, and Student Volunteers

For more information, visit: http://oopsla.org

Critical Dates

Montréal, Canada 2007

Conference Chair
Richard P. Gabriel, USA
chair@oopsla.org

Program Chair
David F. Bacon, IBM
papers@oopsla.org

Onward! Chair
Cristina Videira Lopes, UC Irvine
onward!@oopsla.org

Palais des congrès
de Montréal

October 21–25, 2007

For information, please contact
ACM Member Services Department
1.800.342.6626 (US & Canada)
+1.212.626.0500 (global)
email: info@oopsla.org

OOPSLA is sponsored by ACM SIGPLAN
in cooperation with SIGSOFT

http://oopsla.org

http://www.oopsla.org

� May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

T
o buy or to build, that is the question. Of course, it’s
rarely that cut and dried, so this month Kode Vicious
takes time to explore this question and some of its

many considerations. He also weighs in on the validity of
the ongoing operating system wars. Have an equally con-
troversial query? Put your thoughts in writing and shoot
an e-mail to kv@acmqueue.com.

Dear KV,
I was somewhat disappointed in your response to Unclear
Peer in the December/January 2006/2007 issue of ACM
Queue. You answered the question, but I feel you missed
an opportunity to look at the problem and perhaps
expand Unclear’s professional horizons.

What requirement is being satisfied by having Unclear
build a P2P file-sharing system? Based upon the answer, it
may be more effective, and perhaps even more secure, to
use an existing open source project or purchase commer-
cial software to address the business need. Indeed, if the
definition of P2P is loose enough, encrypted e-mail would
meet your security criteria and might solve the business
problem.

If Unclear is just a koding gnome, content to write
kode as specified and not ask why, then I withdraw my
concerns. Otherwise, it seems to me that an opportunity
to teach Unclear, and your readers, was missed.

Sincerely,
Buyer not always a Builder

Dear BB,
Perhaps I’ve missed the marketing hype around this, or
it has wound up in my spam box like all those ads for
enlargement technology, but last I checked there wasn’t
an off-the-shelf P2P system one could buy. That being
said, you bring up a good, if tangential, point—and one

interesting enough to
prevent your letter from
winding up with all those
aforementioned enlarge-
ment ads.

The buy-vs.-build, or as I like to think of it, the inte-
grate-vs.-build question touches just about every part of
a product. I like to say integrate because that can take into
account using open source software, as well as buying
software from a commercial vendor. Although many
people might like to build everything from scratch—the
Not Invented Here school of software construction—that
is rarely an option in most projects because there is just
too much to be done and never enough time. The prob-
lems that need to be addressed are the cost of integration
and the risks.

Cost in this case is not just that incurred in buying
a piece of software. Free or open source software often
has high costs. The number of people on a local team
required to maintain and integrate new releases of a com-
ponent is definitely a cost that must be accounted for.
Producing documentation is also a cost. For commercial
products the costs include those just listed, as well as any
money required to license the software in question.

In reality, the cost could be seen as just one of the
risks involved when making the decision on whether to
integrate or build a component of a system. The risks of
integrating a component include the likelihood that the
company or project that provides that component will
continue to exist, and whether the component owner will
change the system in a way that doesn’t agree with your
product over time. Plenty of people have been bitten by
software that was changed underneath them.

It all comes down to control. If you can architect your
system in such a way that the risks of integrating a com-
ponent can be mitigated successfully, then integration,
barring exorbitant costs, is probably a reasonable way to
go. If you need absolute control over how a component
works now and in the future, then you’ll have to build it
yourself. There is a spectrum of choices, but those are the
two poles that you must navigate between.

KV

KV the Loudmouth

A koder with

attitude, KV answers

your questions.

Miss Manners he ain’t.

kode vicious

Got a question for Kode Vicious? E-mail him at
kv@acmqueue.com—if you dare! And if your letter
appears in print, he may even send you a Queue coffee
mug, if he’s in the mood. And oh yeah, we edit letters for
content, style, and for your own good!

programmersparadise.com800-445-7899

Your best source for
software development tools! ®

Prices subject to change. Not responsible for typographical errors.

dtSearch Web with Spider
Quickly publish a large amount of data to a Web site
• Dozens of full-text and fielded data search options.
• Highlights hits in XML, HTML and PDF, while

displaying links and images; converts other files
(“Office,” ZIP, etc.) to HTML with highlighted hits.

• Spider adds local or remote web sites (static and
dynamic content) to searchable database

• Optional API supports SQL, C++, Java, and all
.NET languages.

“Bottom line: dtSearch manages a terabyte of
text in a single index and returns results in
less than a second.” —InfoWorld

Download dtSearch Desktop with
Spider for immediate evaluation

New .NET
Spider API

programmers.com/dtsearch

TX Text Control 13
Word Processing Components
TX Text Control is royalty-free, robust
and powerful word processing software in
reusable component form.

programmers.com/theimagingsource

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats RTF, DOC, HTML, XML, TXT
• PDF export without additional 3rd party

tools or printer drivers
• Nested tables, headers & footers, text frames,

bullets, numbered lists, multiple undo/redo
• Ready-to-use toolbars and dialog boxes

Download a demo today.

programmers.com/faircom

c-tree Plus®

by FairCom
With unparalleled performance and sophistication,
c-tree Plus gives developers absolute control over
their data management needs. Commercial
developers use c-tree Plus for a wide
variety of embedded, vertical market,
and enterprise-wide database applications.
Use any one or a combination of our flexible
APIs including low-level and ISAM C APIs, simplified
C and C++ database APIs, SQL, ODBC, or JDBC.
c-tree Plus can be used to develop single-user and
multi-user non-server applications or client-side
application for FairCom’s robust database server
—the c-treeSQL™ Server. Windows to Mac to
Unix all in one package.

64-bit
SQL

Available!

LEADTOOLS
Raster Imaging Pro
by LEAD Technologies
Raster Imaging Pro gives developers the tools
to create powerful imaging applications. LEAD-
TOOLS libraries extend the imaging support of
the .NET framework by providing comprehen-
sive support for image file formats (150+),
200 image processing filters, compression,
TWAIN scanning, high-speed image display,
color conversion, screen capture, special effects
and more.
• .NET, API & C++ Class Library
• New Web Forms Control
• New Class Libraries for .NET
• Royalty Free

programmers.com/lead

programmers.com/techexcel

DevTrack
Powerful Defect and
Project Tracking
by TechExcel
DevTrack, the market-leading defect and project
tracking solution, comprehensively manages
and automates your software development
processes. DevTrack features sophisticated
workflow and process automation, seamless
source code control integration with VSS,
Perforce and ClearCase, robust searching,
and built-in reports and analysis. Intuitive
administration and integration reduces the cost
of deployment and maintenance.

programmers.com/nsoftware

/n software Red Carpet
Subscriptions
by /n software
/n software Red Carpet™ Subscriptions give
you everything in one package: communica-
tions components for every major Internet
protocol, SSL and SSH security, S/MIME
encryption, Digital Certificates, Credit Card
Processing, ZIP compression, Instant
Messaging, and even e-business (EDI)
transactions. .NET, Java, COM, C++, Delphi,
everything is included, together with per
developer licensing, free quarterly update CDs
and free upgrades during the subscription term.

Now with
64-bit Support!

DynamicPDF ReportWriter v4.0 for .NET
by ceTe Software
This easy-to-use tool integrates with ADO.NET
allowing for the quick, real-time generation of
PDF reports. The new GUI Report Designer makes
laying out quality reports extremely simple.

• WYSIWYG Report Designer

• PDF Report Templates

• Recursive Sub-reports

• Automatic pagination, record
splitting and expansion

• Full DynamicPDF Merger
and Generator Integration

• Barcodes & PDF/X-1a

• Event Driven

programmers.com/adobe

Adobe FlexBuilder 2
by Adobe
Adobe® FlexBuilder™ 2 software is a rich
Internet application framework based on
Adobe Flash® that will enable you to
productively create beautiful, scalable
applications that can reach virtually anyone
on any platform. It includes a powerful,
Eclipse™ based development tool, an
extensive visual component library, and
high-performance data services enabling
you to meet your applications’ most
demanding needs.

programmers.com/vmware

VMware® Infrastructure 3
The most widely deployed software suite for
optimizing and managing industry standard IT
environments through virtualization—from the
desktop to the data center. The only production-
ready virtualization software suite, VMware
Infrastructure is proven to deliver results at
more than 20,000 customers of all sizes, used
in a variety of environments and applications.
The suite is fully optimized, rigorously tested
and certified for the widest range of hardware,
operating systems and software applications.
VMware Infrastructure provides built-in management,
resource optimization, application availability and
operational automation capabilities, delivering
transformative cost savings and increased operational
efficiency, flexibility and service levels.

programmers.com/compuware

Compuware DevPartner Studio
8.1 Professional Edition
by Compuware
Compuware’s award-winning DevPartner Studio
Professional Edition lets you debug, test and tune
your code in Microsoft Visual Studio applications,
so you can deliver more reliable applications
quickly and with ease. What else?
• Identify coding errors
• Find memory leaks in .NET and native code
• Pinpoint performance bottlenecks
• Automatically locate thread deadlocks
• Measure code complexity
• Analyze system configuration problems
• Ensure proper test coverage

Paradise #
L050569
$829.99

Paradise #
T340201
$487.99

Paradise #
D770148
$1,444.99

Paradise #
A14137P
$478.99

Named User with
Subscription Plus

Paradise #
N190S78

$2,315.99

Single Server
Paradise #
D290726

$888.99

Paradise #
F010131

$850.99

New
Release!

New
Release!

Pro. Server
C3T005Y

$493.99

Ent. Developer
C3T005Z

$1,482.99

Professional Edition
Paradise #
T79023W

$739.99

2 Processors
Paradise #
V55071H

$909.99

programmers.com/cetesoftware

programmers.com/intel

Intel® Cluster Toolkit
by Intel®

Create applications for Intel® processor-
based cluster systems with performance-
enhancing tools that include perform-
ance libraries, performance analyzers,
and benchmark tests—integrated into
one easy-to-install software bundle.
Intel® Cluster Toolkit 3.0 for Linux
adds more than 20 new features to the
core libraries and tools to efficiently
develop, optimize, run, and distribute
parallel applications on clusters with
Intel processors.

Paradise #
I230ESL

$713.99

programmers.com/datadirect

Stylus Studio 2007
XML Enterprise Suite
by DataDirect
Stylus Studio 2007 XML Enterprise Suite,
CRN Magazine's Product of the Year,
adds powerful and intuitive modules for
XML Pipelines and XML Reporting to an
already robust tool set. It includes two-way
conversion utilities for XML, cross-language
debugging for XQuery, XSLT, Java, and
more. Stylus Studio remains fully standards-
based and standards-compliant, and built-in
performance analysis tools and reports will
help ensure that your XML applications are
hitting on all cylinders.

Single User
Paradise #
P470239

$504.99

http://www.programmersparadise.com

10 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

Dear KV,
I suspect that you don’t get many letters from CFOs, but
one of my people left a copy of Queue in my office the
other day. I read your column and thought you might be
interested in this question. Getting directly to the point,
does the operating system still matter? I ask this because
every time we initiate a project in my org, a small but
loud group of people push me to pick an open source
operating system for the project. It seems that they care
more about that than about the application we’re rolling
out to our staff.

Reading over the trade press, I see claims and counter-
claims about various operating systems, based on security
and total cost of ownership, but all these claims seem

to be written by proponents of one of the systems in
question. At this point, it seems like the operating system
doesn’t really matter anymore, just so long as my applica-
tion runs on it. What do you think? Should I just fire the
loudmouths?

Tired of Zealots
Dear TZ,
You’re right, I don’t receive many letters from CFOs
unless they’re printed on pink paper and include words
like “...please empty your desk by...” I also rarely condone
firing the loud ones, for what must, by now, be obvious
reasons.

Many pundits (i.e., people paid to have opinions) now
claim that the operating system is a commodity that, in
itself, has little intrinsic value. I don’t get paid to have
my opinion, but I claim that pundits have little intrinsic
value.

Let me try to answer this question without going too
deep into Operating Systems 101. The reason that the
operating system matters, and will continue to matter as
long as there are operating systems, is that the operating

system is the ultimate arbiter between your application
and the underlying computer. The operating system con-
trols access to the CPU, memory, and all the devices. A
good operating system is like good service in a restaurant:
there when you need it and invisible when you don’t. A
poorly designed or implemented operating system is like
the waiter who constantly asks, “Is everything all right?”
when your mouth is full.

Two of the most important measures of operating sys-
tem quality are security and efficiency. Does the operating
system you want to use have a good security track record?
No operating system, or piece of software, is perfect, but
there are clearly classes of problems that may affect your
application and these are the ones you, or likely your
staff, need to study to make an informed decision on
which operating system to put under your application.

Efficiency is also important. Although there are plenty
of micro-benchmarks that show that one operating sys-
tem is better than another, the speed of a context switch
is unlikely to impress you—though I would be impressed
if you knew what it meant. For an application, the ques-
tion is one of a macro-benchmark. Simply put, “How
much work can people do in the application in a given
unit of time?”

Another question would be around how integral the
operating system is to your product. If your company
builds products where the operating system is an inte-
gral component, such as a consumer device or piece of
networking equipment, then the quality of the code,
your ability to modify it and distribute your changes,
documentation, and how long you think the company or
project that supports it will last all come into play. These
concerns were addressed in the previous response to the
letter from Buyer not always a Builder.

So, the short answer is, “Yes, the operating system
matters.” And, please, don’t just fire the loudmouths. I
might be one of them.

KV

KODE VICIOUS, known to mere mortals as George V.
Neville-Neil, works on networking and operating system
code for fun and profit. He also teaches courses on various
subjects related to programming. His areas of interest are
code spelunking, operating systems, and rewriting your bad
code (OK, maybe not that last one). He earned his bachelor’s
degree in computer science at Northeastern University in
Boston, Massachusetts, and is a member of ACM, the Usenix
Association, and IEEE. He is an avid bicyclist and traveler who
has made San Francisco his home since 1990.
© 2007 ACM 1542-7730/07/0500 $5.00

kode vicious

A good operating system
is like good service in a restaurant: there when
you need it, invisible when you don’t.

http://www.acmqueue.com

12 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

geek@home

M
ost people I know run wireless networks in their
homes. Not me. I hardwired my home and leave
the Wi-Fi turned off. My feeling is to do it once,

do it right, and then forget about it. I want a low-cost
network infrastructure with guaranteed availability, band-
width, and security. If these attributes are important to
you, Wi-Fi alone is probably not going to cut it.

People see hardwiring as part of a home remodeling
project and, consequently, a big headache. They want
convenience. They purchase a wireless router, usually
leave all the default settings in place, hook it up next
to the DSL or cable modem, and off they go. Ease and
convenience are the selling points, but there are certainly
tradeoffs to consider. As the IT expert of last resort for
family, friends, and sometimes their family and friends,
here are some of my experiences with Wi-Fi in the home.

Accessibility and Availability
Wi-Fi signals usually do not reach every area of the home,
or if they do, sometimes the service can be intermittent
because of RF noise or conflict. As luck would have it,
those areas are typically the most important: the home
office, the master bedroom, or the kids’ rooms. Often the
culprit is too many walls or a wall that is too dense in
the straight line between the router and its destination. A
wireless telephone or microwave oven can sometimes be
in conflict with the same unlicensed RF spectrum.

Usually Dad is dispatched to kludge together some
kind of compromise. This typically means changing the
router and/or client computer position to lessen outside
interference and/or capture some finger of the transmit-
ted Wi-Fi signal. Those who are more sophisticated will
purchase a wireless access point, placing it at some mid-
point to capture, amplify, and resend the signal, adding
latency and decreasing bandwidth. As a last resort, the
truly brave will string a long patch cable from the router
to the problem area, usually to the horror of the signifi-
cant other required to live with cables snaking along the
baseboards.

Security. Most people use either no security at all or
WEP (Wired Equivalent Privacy). More often than not
they just plug the unit in and use it with the default

settings. As a result, the
majority of wireless LANs
can be easily compromised.
Just take a look at the scary
discussions about how

quickly a free utility called Aircrack can make an outside
laptop a peer on a WEP-secured LAN.1

A quick scan of the surrounding homes in my rela-
tively sophisticated Silicon Valley neighborhood showed
a total of 14 operating Wi-Fi routers visible from the
router in my closet. Even though WPA (Wi-Fi Protected
Access) is currently considered to be the best available Wi-
Fi security paradigm, only one was using it. The rest were
either open or secured by WEP.

Why should you care? Not only do you want to surf
the Internet in private, but you do not want unauthor-
ized people using your Internet account or rummaging
through your private information (think e-mail, medical
records, tax returns, Quicken files, and PayPal and eBay
passwords). Perhaps more importantly, you do not want
to be liable to organizations like the RIAA (Recording
Industry Association of America) for illegally download-
ing copyrighted material.

Bandwidth. Wi-Fi routers are rated at certain speeds,
but the actual realized bandwidth is much less. The most
popular standard, 802.11g, is rated at 54 megabits per
second, but the effective rate realized in the real world is
closer to 20-25 Mbps. These speeds are adequate for Web
browsing and e-mail but are not nearly enough for home
media, remote file sharing, or moving large files between
machines. Newer, faster standards than 802.11g are now
starting to take hold.

Cost. While most laptops and desktops produced
today have Wi-Fi built in, older machines do not. Wi-Fi
has only recently become standard on desktop machines.
To become wireless, older systems will require the pur-
chase, installation, and configuration of an additional
Wi-Fi card. In my house everyone has his or her own
computer, and I expect that my family is fairly typical.
An upgrade to wireless would probably cost around $50
plus installation and configuration time for each older
computer.

Even at home,

hardwiring is

the way to go

Mache Creeger, Emergent Technology Associates

Embracing Wired Networks

Managing
Projects & Teams

Agile
Development

Plan-Driven
Development

Process Improvement
& Measurement

Testing & Quality
Assurance

Security &
Special Topics

DEVELOPMENT
L I F E CYC L E
PRACTICES

REGISTER NOW!
www.sqe.com/bettersoftwareconf

www.sqe.com

JUNE 18–21, 2007 LAS VEGAS, NEVADA THE VENETIAN

KEYNOTES BY INTERNATIONAL EXPERTS
Jeff Payne
Cigital, Inc.

What Better
Software
Means to the
CEO

Payson Hall
Catalysis
Group, Inc.

Risk
Management
—It’s Not Just
for Gamblers
Any More

Sanjeev
Verma and
Kendra
Yourtee
Microsoft

How to
Design
Frustrating
Products

Alan
Shalloway
NetObjectives

Using Lean
Thinking to
Align People,
Process, and
Practices

Jim Coplien
Nordija A/S

What Snake
Oil is Your
Organization
Buying
Today?

14 IN-DEPTH TUTORIALS receive the best strategic insight
and tactical advice for your software development challenges

5 KEYNOTE SESSIONS on a variety of topics given by
international industry experts from a range of backgrounds

42 CONCURRENT SESSIONS packed with information
covering managing projects and teams, plan-driven development,
agile development, process improvement and measurement,
testing and quality assurance, and security and special topics to
meet the professional needs of everyone

VISIT TOP INDUSTRY PROVIDERS discover the latest in
software development technologies, trends, and practices

OVER 99% of 2006 attendees recommend the Better
Software Conference & EXPO to others in the industry

http://www.sqe.com/bettersoftwareconf

14 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

The promise of Wi-Fi providing secure, available, and
adequate network bandwidth anywhere in the home
depends on what secure, available, and adequate mean
to you. Wi-Fi plays on the fears that installing wiring in
the home will cause great pain and cost, but many folks
overlook the baggage that Wi-Fi brings with it. In my
experience, what Wi-Fi really provides is limited network
bandwidth, good for e-mail and Web browsing but not
much else; it is easy to set up, but provides networking
that is usually not very secure and is limited to unob-
structed and interference-free environments.

Wired Infrastructure
With a wired infrastructure, you get a network utility that
is highly available and full bandwidth (up to 1 gigabit
per second, with 10 Gbps on the horizon). With access
requiring a physical connection, security issues are lim-
ited to the capabilities of the firewall inside the router.

The wired infrastructure I built in my home centralizes
all the wired services from wherever they enter the home
to the central wiring closet. From there I project those
services to other places around the house. This works
not only for network services, but also for phone, alarm,
audio, and video.

The cost of a wired infrastructure can be divided into
two areas: the cost of the equipment, which is relatively
inexpensive; and the cost of the installation, which can
be variable depending on the architecture of your home
and your skill set. You need network cable, a way to ter-
minate the cable both at the central wiring closet and at
the remote location, devices such as routers and network
switches to centrally support and distribute services to the
remote locations, and patch cables to attach those devices
to the wiring infrastructure.

Cable. At a minimum, you should use CAT5e-rated
UTP (unshielded twisted pair) cable. Its most economi-
cal form is a box with a 1,000-foot roll. Since the type of
cable directly impacts overall performance and how long
it will remain useful, I upgraded the cable in my home
to one that is rated at 350 megahertz and is relatively
immune to the kinks and twists that can occur during
installation. Standard CAT5e cable typically costs around
$50 per box, while the cable in my home costs a little
under $200 per box.2 In most cases one 1,000-foot box
should suffice for an entire house.

Wire closet terminations. New or used 110-format
punch-down or patch panels, rated CAT5e or greater,
are relatively inexpensive and can terminate each UTP
cable connecting a remote location to the wiring closet.
They typically cost between $50 and $100. To connect

the cable to either one of these panels, you may need to
borrow or purchase a 110-format punch-down tool that
forces each of the eight UTP wires into the panel connec-
tor.3 From the panel you can connect each remote loca-
tion to a network switch with a small patch cable.

It is important to keep the signals on each wire on a
cable consistent through the connection. That means
that each of the color-coded eight wires of a UTP cable
must be attached to the same RJ45 connector pin on both
ends of the cable. The assignment of each of these wires
to a specific connector pin is defined by a standard. For
my installations I stick to the 568A standard.4

Remote terminations. For remote network outlets in
other rooms, most connector vendors5 have a range of
faceplate options that fit a standard-size, single-gang,
plastic, old work outlet box6 and range from one to six

connectors. Along with the normal CAT5e or better RJ45
network connector, the options include RJ11 telephone
connectors, as well as RCA, F, and BNC coax connectors
for audio and video.

Installation
Running cabling from a central location to a room outlet
is the major challenge of installing a wired network. It
requires some creativity in planning a path to get to its
destination unseen. Ethernet allows for a cable length of
up to 100 meters (328 feet). Taking a more roundabout
route that allows the cable to remain hidden is encour-
aged and will rarely impact performance. The only rule
is to avoid running parallel to a power cable. Either keep
parallel runs at least three or four feet away or cross over
them at a 90-degree angle.

Where to put the cable runs. My home is mostly one

geek@home

Wi-Fi plays on
the fears that
installing wiring will cause
great pain and cost...

ACM QUEUE May/June 2007 15 more queue: www.acmqueue.com

story with an unfinished attic above and an unfinished
crawl area below the living space. Both of those areas
are available as cable pathways from the wiring closet to
any network outlet in my house. Because of easy access,
I opted for the unfinished crawl area for my cable runs,
using large drive rings7 (they are like big hooks) attached
to exposed beams and floor joists every 18 inches or so to
support the cable from the wiring closet to its destination
directly underneath the room outlet.

To install a flush-mount room outlet, you must first
make its location visible to the unfinished attic or crawl
space. In my case, I gently removed the floor molding
right below where I wanted to place the outlet and drilled
a small signal hole through the floor directly next to the
wallboard. I threaded a piece of wire through the hole so
it was visible in the crawl area below and then cut a hole
in the wallboard to accommodate the plastic workbox.

Back under the house the hanging wire became a
guide to drill a one-inch hole through the flooring and
into the empty space inside the wall. I inserted the cable
into the hole and pushed it through so it was visible to
the cutout in the wall in the room above. I then pushed
the cable through the cutout and the opening in the back
of a plastic workbox. The box could then be installed in
the cutout flush to the wallboard. I attached the RJ45
connectors to the end of the cable and mounted them
into the faceplate, which I then attached to the workbox
in the wall. With the hanging wire removed and molding
reinstalled, the signal hole was covered from view.

If you do not have an attic or crawl space, you do have
other options for installing a flush- or surface-mount
outlet in or on a wall. If you have wall-to-wall carpet, you
can pull it off the tack strip that runs along the wall, place
cable in the space between the tack strip and wall, and
replace the carpet back onto the tack strip. Transitions
across interior walls are easily done by drilling through
the wall right at the level of the floor. If there are no
carpets, you can try placing cable behind floor molding.
Usually there is a space between the wallboard and the
floor that will accommodate a cable. Similar strategies
may work for door and ceiling molding. As a last resort,
you can drill a hole through an exterior wall to the out-
side of your home, run wiring around the outside of the
house under the eaves, and back through the wall to its
final destination. Plug the holes with silicon caulk.

Invest in wire
Wi-Fi poses accessibility, availability, and bandwidth
restrictions, as well as privacy and liability risks that I find
unacceptable to my home networking needs. I often won-

der at the efforts and expense people will go to in order
to avoid installing wires when it is obvious that wires
are the best way to transmit information. If you look at
any commercial setting, structured wiring is the primary
networking platform; wireless is secondary. Given that
home networking demands usually lag what is needed
commercially, people should embrace wired networks for
the home.

With cable and wire closet terminations available from
$150 and the parts costs for room outlets at between $5
to $10 per room, the equipment costs for hardwiring
your home are relatively inexpensive. The variable is
how difficult it is to hide the cable running from the wire
closet to the room outlet. With minimal home improve-
ment skills and a forgiving home architecture, a commer-
cial-grade wiring plant can easily and inexpensively be
installed to provide rock-solid and secure service to every
room in your house. I see it much like the transition from
terrestrial broadcast TV to cable TV. Given the increas-
ing demands you will be making on your home network
environment, investing in a wired infrastructure will
eventually be as common as wiring for cable TV. Q

REFERENCES
1. �http://www.google.com/search?hl=en&q=aircrack&btn

G=Google+Search.
2. �Belden Media Twist (part number 1872A) rated at CAT6

-; http://www.belden.com/pdfs/MasterCatalogPDF/
PDFS_links%20to%20docs/11_Networking/11.4.pdf.

3. �I used a Harris-Dracon D-814 punch-down handle with
a 110 punch-down blade.

4. �See the definition of 568A and 568B UTP Cable Ter-
mination Standards at http://www.ablecables.com.
au/568avb.htm.

5. �These vendors include Lucent, Panduit, Leviton, and
many others.

6. �You can find old plastic workboxes at any home
improvement center for around $1.

7. �I used 1¼ -inch drive rings priced at around 25 cents a
piece.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MACHE CREEGER (mache@creeger.com) is a technology
industry veteran based in Silicon Valley. He is the principal
of Emergent Technology Associates, marketing and
business development consultants to technology companies
worldwide.
© 2007 ACM 1542-7730/07/0500 $5.00

16 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

O
ver the past 30 years Michael Stonebraker has left an
indelible mark on the database technology world.
Stonebraker’s legacy began with Ingres, an early

relational database initially developed in the 1970s at UC
Berkeley, where he taught for 25 years. The Ingres tech-
nology lives on today in both the Ingres Corporation’s
commercial products and the open source PostgreSQL
software. A prolific entrepreneur, Stonebraker also started
successful companies focused on the federated database
and stream-processing markets. He was elected to the
National Academy of Engineering in 1998 and currently

is adjunct professor of
computer science at MIT.

Interviewing Stone-
braker is Margo Seltzer,
one of the founders of
Sleepycat Software, makers

of Berkeley DB, a popular embedded database engine now
owned by Oracle. Seltzer now spends most of her time
teaching and doing research at Harvard, where she is full
professor of computer science. She was kind enough to
lend us her time and travel down the Charles River to

interview

A Conversation with
Michael Stonebraker and
Margo Seltzer

Relating to

databases

Photography by Liesl Clark

http://www.usenix.org/usenix07/aq

• An extensive Training Program,
 covering crucial topics and led
 by highly respected instructors

• Technical Sessions, featuring the
 Refereed Papers Track, Invited Talks,
 and a Poster Session

• Plus BoFs and more!

http://www.usenix.org/usenix07/aq

18 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

speak with Stonebraker, her former Ph.D. advisor, at MIT’s
striking Stata Center.

MARGO SELTZER It seems that your rate of starting
companies has escalated in the past several years. Is this a
reflection of your having more time on your hands or of
something going on in the industry?
MICHAEL STONEBRAKER Well, I think it’s definitely
the latter. What I see happening is that the large data-
base vendors, whom I’ll call the elephants, are selling a
one-size-fits-all, 30-year-old architecture that dates from
somewhere in the late 1970s.

Way back then the technological requirements were
very different; the machines and hardware architectures
that we were running on were very different. Also, the
only application was business data processing.

For example, there was no embedded database market
to speak of. And there was no data warehouse market.
Today, there are a variety of different markets with very
different computing requirements, and the vendors are
still selling the same one-size-fits-all architecture from 25
years ago.

There are at least half a dozen or so vertical markets in
which the one-size-fits-all technology can be beaten by
one to two orders of magnitude, which is enough to make
it interesting for a startup. So I think the aging legacy
code lines that the major elephants have are presenting a
great opportunity, as are the substantial number of new
markets that are becoming available.
SELTZER What new markets are more amenable to what
we’ll call the small mice, as opposed to the big elephants?
STONEBRAKER There are a bunch of them. Let’s start
with data warehouses. Those didn’t exist until the early
1990s. No one wants to run large, ad hoc queries against
transactional production databases, as no one wants to
swamp such systems.

So everyone scrapes data off of transactional systems
and loads it into data warehouses, and then has their
business analysts running whatever they want to run.
Everyone on the planet is doing this, and data ware-
houses are getting positively gigantic. It’s very hard to
run ad hoc queries against 20 terabytes of data and get an
answer back anytime soon. The data warehouse market
is one where we can get between one- and two-orders-
of-magnitude performance improvements from a very
different software system.

The second new market to consider is stream process-
ing. On Wall Street everyone is doing electronic trading.
A feed comes out of the wall and you run it through a
workflow to normalize the symbols, clean up the data,

discard the outliers, and then compute some sort of secret
sauce.

An example of the secret sauce would be to compute
the momentum of Oracle over the last five ticks and com-
pare it with the momentum of IBM over the same time
period. Depending on the size of the difference, you want
to arbitrage in one direction or the other.

This is a fire hose of data. Volumes are going through
the roof. It’s business analytics of the same sort we see in
databases. You need to compute them over time windows,
however, in small numbers of milliseconds. So, again, a
specialized architecture can just clobber the relational
elephants in this market.

I also believe the same statement can be made, believe
it or not, about OLTP (online transaction processing). I’m
working on a specialized engine for business data process-
ing that I think will be about a factor of 30 faster than the
elephants on the TPC-C benchmark.

Text is the fourth market. None of the big text ven-
dors, such as Google and Yahoo, use databases; they
never have. They didn’t start there, because the relational
databases were too slow from the get-go. Those guys have
all written their own engines.

It’s the same case in scientific and intelligence data-
bases. Most of these clients have large arrays, so array
data is much more popular than tabular data. If you have
array data and use special-purpose technology that knows
about arrays, you can clobber a system in which tables are
used to simulate arrays.
SELTZER If I rewind history 20 years, you could imagine
somebody else sitting in this room, saying, “Today people
are building object-oriented applications, and relational
databases aren’t really any good for objects. We can get a
couple of orders-of-magnitude performance improvement
if we build a data model around objects instead of around
relations.”

If we fast-forward 20 years, we know what happened
to the object-oriented database guys. Why are these
domains different?
STONEBRAKER That’s a great question: Why did OO
(object-oriented) databases fail? In my opinion the prob-
lem with the OO guys is that they were fundamentally
architecting a system that was oriented toward the needs
of mechanical and electronic CAD. The trouble is, the
CAD market didn’t salute to their systems. They were very
unsuccessful in selling to the engineering CAD market-
place.

The trouble was that the CAD guys had existing
systems that would swizzle disk data into main memory,
where they would edit stuff with very substantial editing

interview

ACM QUEUE May/June 2007 19 more queue: www.acmqueue.com

20 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

systems. Then they would reverse swizzle to put it back.
If you were to go with object-oriented databases, the only
thing you would save would be this swizzling code in
both directions. There wasn’t enough pain for them to
think about switching to something else.

The OODB guys weren’t faster than the CAD market’s
proprietary home-brewed systems. The CAD guys already
had mountains of proprietary code to do all this editing.
The OODB guys just didn’t solve a big enough piece of
their problem, and they weren’t faster, so they were never
very successful in the CAD marketplace.

They failed because the primary market they were
going after didn’t want them. I don’t think that is true of
the other markets I’ve talked about.
SELTZER Let me push on that point a little bit. The Wall
Street guys have piles and piles of software that they’ve
built in-house to do exactly what you’re describing.
What’s the compelling reason for them to switch, when
the CAD guys didn’t think it was worthwhile?
STONEBRAKER There are two very simple answers.
Answer number one is that feed volumes are going
through the roof, and they’re tending to break their
legacy infrastructures. That gives them a compelling rea-
son to try something new.

The second reason is that electronic trading has the
characteristic that the “secret sauce” works for a while—
and then it stops working, so you have to keep changing
stuff. The current Wall Street folks are dying because of
rickety infrastructure and an inability to change their
hardcoded interfaces quickly to meet business needs.

One of the pilot projects that StreamBase [founded by
Stonebraker in 2003] did was with a large multinational
investment bank with bond-trading desks in Tokyo, New
York, London, Paris, and a few other places. Each of these
bond desks was using home-brewed software, written
locally. What happens is that all of the bond desks reprice
bonds on the fly. For example, a typical algorithm would
be: “If two-year treasuries tick up by five basis points,
then reprice five-year General Motors corporate bonds by
three basis points.” They have these built-in rules. So all
of the bond desks are adjusting their prices and publish-
ing them electronically. The internal traders inside this
particular institution watch the same feeds that the bond
guys are watching. If they can reach in and grab the bond
that’s about to be repriced, before the bond guys manage
to reprice it, then, of course, they win.

It’s basically a latency arms race. If your infrastructure
was built with one-second latency, it’s just impossible
to continue, because if the people arbitraging against
you have less latency than you do, you lose. A lot of the

legacy infrastructures weren’t built for sub-millisecond
latency, which is what everyone is moving toward.
SELTZER Many people would argue that we solved the
performance problem; processors are fast enough. You’re
saying, “No, there really still is a performance problem
and a latency problem.” The hardware guys are giving
us processors with multiple cores, so they’re increas-
ing parallelism, but they’re actually slowing down the
single-threaded instruction execution rate. How does that
interact with what you’re seeing in the stream-processing
world?
STONEBRAKER I can explain what’s happening with a
very simple example. Until recently, everyone was using
composite feeds from companies such as Reuters and
Bloomberg. These feeds, however, have latency, measured
in hundreds of milliseconds, from when the tick actually
happens until you get it from one of the composite-feed
vendors.

Direct feeds from the exchanges are much faster.
Composite feeds have too much latency for the current
requirements of electronic trading, so people are getting
rid of them in favor of direct feeds.

They are also starting to collocate computers next to
the exchanges, again, just to knock down latency. Any-
thing you can do to reduce latency is viewed as a com-
petitive advantage.

Let’s say you have an architecture where you process
the data from the wire and then use your favorite mes-
saging middleware to send it to the next machine, where
you clean the data. People just line up software architec-
tures with a bunch of steps, often on separate machines,
and often on separate processes. And they just get clob-
bered by latency.
SELTZER So, it’s not the latency of the instruction execu-
tion; it’s the latency of the architecture?
STONEBRAKER Right.
SELTZER That argues that the software architectures we’re
building now are wrong.
STONEBRAKER Well, as the founder of Sleepycat, you
can readily relate to the following characteristic. If I want
to be able to read and write a data element in less than a
millisecond, there is no possible way that I can do that
from an application program to any one of the elephant
databases, because you have to do a process switch, a
message to get into their systems. You’ve got to have an
embedded database, or you lose.

In the stream processing market, the only kinds of
databases that make any sense are ones that are embed-
ded. With all the other types, the latency is just too high.
SELTZER You’re preaching to the choir on that one. But

interview

ACM QUEUE May/June 2007 21 more queue: www.acmqueue.com

let’s talk about that side of the world, where the elephants
may be elephants, but they’re not standing still. Can you
really compete with the elephants in the long term? Are
the elephants simply going to get smart and say, “OK, our
big engine doesn’t do this; so we’ll build a little engine
that does.” Right? They’ve got lots of programmers.
STONEBRAKER I think of things in a much more holistic
fashion. At least in the database world, the large ven-
dors move quite slowly. So it seems the way technology
transfer happens is that the
elephants just don’t do new
ideas. They wait for startups
to prove that they work. The
good ideas go into startups
first. Then the elephants pick
and choose from them.
SELTZER So the startups are
necessary for innovation,
because the elephants can’t
innovate—is that really the
answer?
STONEBRAKER I think so.
SELTZER Let’s draw a
distinction between emerg-
ing technology and disrup-
tive technology. Emerging
technology is anything that’s
new and may be different
from the old stuff. Disruptive
technology is an emerging
technology that ultimately
replaces the old technology.
My question is whether these
new database verticals that
you’ve identified are emerg-
ing or disruptive?
STONEBRAKER Well, the
elephants never had the text market, so that is simply
somebody else’s stuff.

Right now the elephants own the warehouse market,
but they’re selling the wrong technology, and it’s not
obvious how to morph from old to new. I think that will
be very disruptive.

Stream processing is largely a new application. That’s
simply a green field that didn’t exist 20 years ago, and
now it does.

And I think if I’m successful in building an OLTP
engine that’s faster by a factor of 30, that would be very
disruptive.
SELTZER Let’s talk about how that disruption can occur,

given that some people think that nobody actually buys
databases anymore; people just buy applications. In order
to truly disrupt, you’ve got to win the applications. How
does a tiny startup do that?
STONEBRAKER It’s clearest in the data warehouse space,
where it turns out that Teradata is doing very well. There’s
a startup in Framingham, called Netezza, that’s doing
very well, too. It’s selling proprietary hardware, which no
one on the planet wants from the get-go, but it’s very suc-

cessful. Why would anybody
buy lock-ins and proprietary
hardware? The answer is,
you have to be in consider-
able pain.

In the data warehouse
market, people are in tre-
mendous pain. There are
several ways to talk about
this pain. One way is ad hoc
queries on data warehouses.
The complexity of queries
tends to go up at about the
square of the database size.
So, if you have a small ware-
house, you’re perfectly okay
on Wintel and SQL Server.

But then, if you run out
of gas on SQL Server, which
doesn’t scale anymore,
you’re facing a discon-
tinuous forklift upgrade to
something like, say, Sun
Solaris and Oracle. That’s
different hardware, a differ-
ent database, and a different
operating system. In short, a
forklift upgrade—a horrible

transition to manage.
If you’re staring at this wall, and the solution is a fork-

lift upgrade, then you’re in real pain.
Similarly, Oracle has scalability problems that limit its

ability to scale in the multi-terabyte range. What usually
happens is that people who have a terabyte-size ware-
house that is growing are looking at the same kind of
wall, and they are forced to go to something like Netezza
or Teradata.

If you’re looking at any one of these walls, you’re
faced with great pain in moving to the other side. And if
you’re in this kind of pain, it means you’re willing to take
a gander at new technology.

22 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

SELTZER I’m going to argue that you just, in fact, agreed
with the point of my question, which is that people don’t
buy databases, they buy applications. The application
that you just described is data warehousing. Each cus-
tomer may run different queries on the warehouse, but
the warehouse is still an application.

If you make that transition into the OLTP market, now
suddenly OLTP is really a platform, and there are zillions
of applications that run on top of it. How does a little guy
disrupt the big technology?
STONEBRAKER An interesting way to answer that ques-
tion is by looking at Tandem. It made a lot of hay by
being a serious player in the OLTP market; the New York
Stock Exchange runs Tandem. But Tandem didn’t start
out in OLTP; it started in the machine tool market. The
NYSE is not about to trust its data to a 20-person startup.

You have to sneak into the OLTP market some other
way, because the people who do serious OLTP are very
cautious—they wear both a belt and suspenders. They’re
very risk-averse, and they’re not going to trust a startup,
no matter what.

If you started a company, it would behoove you to
get two or three huge application elephants to be back-
ers who would agree to go through the pain to give you
legitimacy. For example, Dale Skeen’s company, Vitria,
in the beginning, had FedEx as its premier account. You
need a pathfinder application.

Another alternative is if you’re in the warehouse
market and you’re successful because there’s so much
pain there, then you move into the mixed market, which
is partly transactions and partly warehouses. Once you’re
successful there, you just attempt to eat your way into the
OLTP market.
SELTZER The classic disruptive technology approach.
STONEBRAKER All startups with disruptive technology
have this problem. How do you get legitimacy in the
enterprise software space, where stuff really has to work?

One of the things I find fascinating is that we’ve been
writing software for 30 years and the tools we have to cre-
ate reliable software are not significantly dissimilar from
what we had a long time ago. Our ability to write reliable
software is hardly any better now than it was then. That’s
one of my pet peeves.
SELTZER Does that mean you’re going to become a lan-
guages guy or a tools guy?
STONEBRAKER I wish I knew something about that.
SELTZER That hasn’t stopped others, before.
STONEBRAKER If you look at how you talk to databases
right now, you use ODBC and JDBC, embedded in your
favorite language. Those are the worst interfaces on the

planet. I mean, they are so ugly, you wouldn’t wish them
on your worst enemy.

C++ and C# are really big, hard languages with all
kinds of stuff in them. I’m a huge fan of little languages,
such as PHP and Python.

Look at a language such as Ruby on Rails. It has been
extended to have database capabilities built into the
language. You don’t make a call out to SQL; you say, “for
E in employee do” and language constructs and variables
are used for database access. It makes for a much easier
programming job.

There are some interesting language ideas that can be
exploited. If I knew anything about programming lan-
guages, I probably would attempt to do something.

SELTZER Now I’m really going to hold your feet to the
fire. You were around not only at the birth of the rela-
tional stuff, but you were one of the movers and shakers
that made it happen. Are you going to be one of the mov-
ers and shakers who helps lead to its demise, as well?
STONEBRAKER Let’s look at Ruby on Rails again. It does
not look like SQL. If you do clean extensions of interest-
ing languages, those aren’t SQL and they look nothing
like SQL. So I think SQL could well go away.

More generally, Ruby on Rails implements an entity-
relationship model and then basically compiles it down
into ODBC. It papers over ODBC with a clean entity-rela-
tionship language embedding.

So you say, “Well, if that’s true, is the relational model
going to make it?” In semi-structured data, it’s already
obvious that it’s not. In data warehouses, 100 percent
of the data warehouses I’ve seen are snowflake schemas,
which are better modeled as entity relationships rather
than in a relational model.

If you get a bunch of engines for a bunch of different
vertical markets, both the programming language inter-
face and the data model can be thrown up in the air. We
aren’t in 1970. It’s 37 years later, and we should rethink
what we’re trying to accomplish and what are the right
paradigms to do it.
SELTZER One of the big arguments, if I recall correctly,
was that you could prove things about the relational
model. You could make strong mathematical statements.
Is that important in building systems or in designing and
developing this kind of database software?
STONEBRAKER If you look at what Ted Codd originally
did with the relational model, and you compare it with
SQL, you can prove almost nothing about SQL. In fact,
there’s a terrific paper by Chris Date (A Critique of the

interview

ACM QUEUE May/June 2007 23 more queue: www.acmqueue.com

SQL Database Language,
ACM SIGMOD Record,
1984), that basically spent
page after page, in area after
area, explaining why SQL
has terrible semantics. I
think we’ve drifted far away
from Ted Codd’s original
clean ideas.
SELTZER Have we drifted
sufficiently far away from
our roots that the roots no
longer matter?
STONEBRAKER I think
that’s right, and I think
with good reason: because
Ted Codd’s original idea
was to clean up IBM’s IMS
(Information Management
System) and business data
processing. Now you want
semi-structured data and
data warehousing, and the
problem is just vast, com-
pared with what he was
talking about 37 years ago.
We’ve taken what started
out as a simple standard
and grown it into a huge
thing, with layer upon layer
of junk.
SELTZER Which no one
understands.
STONEBRAKER Therefore,
what the community does
is “add only,” which is why we just get more and more
stuff. You don’t create a skyscraper by growing it one floor
at a time, year by year by year, by committee.
SELTZER I’ve always liked the attitude that we should
start hiring programmers to remove lines of code, instead
of hiring them only to produce lines of code.

I have one last question to ask: Now that you’ve done
startups on both coasts, can you say there is a difference?
STONEBRAKER Having seen programmers, students, and
technologists on both coasts, I have found that there are
more of them on the west coast, but there sure are smart
people everywhere.

In terms of the venture capital community, I think the
east coast VCs are more conservative. You know, there are
more of them who wear bowties.

I don’t detect any difference in the intellectual cli-
mate. I think MIT has some of the smartest people on the
planet. So does Stanford. So does Berkeley.
SELTZER There’s another school up the river, Mike, that
you’re missing.
STONEBRAKER I applaud your efforts to improve com-
puter science at Harvard, and I wish Harvard would get
deadly serious about computer science because there’s a
tremendous upside that you can realize over time.
SELTZER Well, come meet our students! Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

© 2007 ACM 1542-7730/07/0500 $5.00

24 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

MICHI HENNING, ZeroC

Why changing APIs
might become
a criminal offense

void makeTV(bool isB
lackAndWhite, bool isF

latScreen) Select(re
adCopy, w

riteCopy, errorCopy, In
t32.MaxValue);

venum ColorType { Color, BlackAndWhite };

enum ScreenType { CRT, FlatScreen };

ACM QUEUE May/June 2007 25 more queue: www.acmqueue.com

After more than 25 years as a software engineer, I still find
myself underestimating the time it will take to complete
a particular programming task. Sometimes, the resulting
schedule slip is caused by my own shortcomings: as I dig
into a problem, I simply discover that it is a lot harder
than I initially thought, so the problem takes longer to
solve—such is life as a programmer. Just as often I know
exactly what I want to achieve and how to achieve it,
but it still takes far longer than anticipated. When that
happens, it is usually because I am struggling with an API
that seems to do its level best to throw rocks in my path
and make my life difficult. What I find telling is that,
after 25 years of progress in software engineering, this
still happens. Worse, recent APIs implemented in modern
programming languages make the same mistakes as their
two-decade-old counterparts written in C. There seems to
be something elusive about API design that, despite many
years of progress, we have yet to master.

Good APIs are Hard
We all recognize a good API when we get to use one.
Good APIs are a joy to use. They work without friction

and almost disappear from sight: the right call for a
particular job is available at just the right time, can be
found and memorized easily, is well documented, has an
interface that is intuitive to use, and deals correctly with
boundary conditions.

So, why are there so many bad APIs around? The
prime reason is that, for every way to design an API
correctly, there are usually dozens of ways to design it
incorrectly. Simply put, it is very easy to create a bad API
and rather difficult to create a good one. Even minor
and quite innocent design flaws have a tendency to get
magnified out of all proportion because APIs are provided
once, but are called many times. If a design flaw results in
awkward or inefficient code, the resulting problems show
up at every point the API is called. In addition, separate
design flaws that in isolation are minor can interact with
each other in surprisingly damaging ways and quickly
lead to a huge amount of collateral damage.

Bad APIs are Easy
Before I go on, let me show you by example how seem-
ingly innocuous design choices can have far-reaching

API
Design Matters

void makeTV(bool isB
lackAndWhite, bool isF

latScreen) Select(re
adCopy, w

riteCopy, errorCopy, In
t32.MaxValue);

enum ScreenType { CRT, FlatScreen };

26 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

ramifications. This example, which I came across in my
day-to-day work, nicely illustrates the consequences of
bad design. (Literally hundreds of similar examples can
be found in virtually every platform; my intent is not to
single out .NET in particu-
lar.)

 Figure 1 shows the
interface to the .NET socket
Select() function in C#.
The call accepts three lists
of sockets that are to be
monitored: a list of sockets
to check for readability, a
list of sockets to check for
writeability, and a list of
sockets to check for errors.
A typical use of Select()
is in servers that accept
incoming requests from
multiple clients; the server
calls Select() in a loop and,
in each iteration of the
loop, deals with whatever
sockets are ready before
calling Select() again. This
loop looks something like
the one shown in figure 1.

The first observation is
that Select() overwrites its
arguments: the lists that
are passed into the call
are replaced with lists that
contain only those sockets
that are ready. As a rule,
however, the set of sockets
to be monitored changes
only rarely, and the most

common case is that the server passes the same lists in
each iteration. Because Select() overwrites its arguments,
the caller must make a copy of each list before passing it
to Select(). This is inconvenient and does not scale well:
servers frequently need to monitor hundreds of sockets
so, on each iteration, the code has to copy the lists before
calling Select(). The cost of doing this is considerable.

A second observation is that, almost always, the list of
sockets to monitor for errors is simply the union of the
sockets to monitor for reading and writing. (It is rare that
the caller wants to monitor a socket only for error condi-
tions, but not for readability or writeability.) If a server
monitors 100 sockets each for reading and writing, it ends
up copying 300 list elements on each iteration: 100 each
for the read, write, and error lists. If the sockets moni-
tored for reading are not the same as the ones monitored
for writing, but overlap for some sockets, constructing the

API
Design Matters

The .NET socket Select() function in C#
public static void Select(IList checkRead, IList checkWrite,
 	 IList checkError, int microseconds);
{

//Server code
int timeout = ...;
ArrayList readList = ...; // Sockets to monitor for reading.
ArrayList writeList = ...; // Sockets to monitor for writing.
ArrayList errorList; // Sockets to monitor for errors.
while(!done)
{
 SocketList readTmp = readList.Clone();
 SocketList writeTmp = writeList.Clone();
 SocketList errorTmp = readList.Clone();
 Select(readTmp, writeTmp, errorTmp, timeout);
 for(int i = 0; i < readTmp.Count; ++i) {
 // Deal with each socket that is ready for reading...
 }
 for(int i = 0; i < writeTmp.Count; ++i) {
 // Deal with each socket that is ready for writing...
 }
 for(int i = 0; i < errorTmp.Count; ++i) {
 // Deal with each socket that encountered an error...
 }
 if(readTmp.Count == 0 &&
 writeTmp.Count == 0 &&
 errorTmp.Count == 0) {
 // No sockets are ready...
 }
}

FI
G

 1

ACM QUEUE May/June 2007 27 more queue: www.acmqueue.com

error list gets harder because of the need to avoid placing
the same socket more than once on the error list (or even
more inefficient, if such duplicates are accepted).

Yet another observation is that Select() accepts a time-
out value in microseconds: if no socket becomes ready
within the specified time-out, Select() returns. Note,
however, that the function has a void return type—that
is, it does not indicate on return whether any sockets are
ready. To determine whether any sockets are ready, the
caller must test the length of all three lists; no socket is
ready only if all three lists
have zero length. If the
caller happens to be inter-
ested in this case, it has
to write a rather awkward
test. Worse, Select() clob-
bers the caller’s arguments
if it times out and no
socket is ready: the caller
needs to make a copy of
the three lists on each
iteration even if nothing
happens!

The documentation for
Select() in .NET 1.1 states
this about the time-out
parameter: “The time to
wait for a response, in
microseconds.” It offers no
further explanation of the
meaning of this parameter.
Of course, the question
immediately arises, “How
do I wait indefinitely?”
Seeing that .NET Select() is
just a thin wrapper around
the underlying Win32
API, the caller is likely to
assume that a negative
time-out value indicates
that Select() should wait
forever. A quick experi-
ment, however, confirms
that any time-out value
that is equal to or less
than zero is taken to mean
“return immediately if
no socket is ready.” (This
problem has been fixed
in the .NET 2.0 version of

Select().) To wait “forever,” the best thing the caller can
do is pass Int.MaxValue (231-1). That turns out to be a little
over 35 minutes, which is nowhere near “forever.” More-
over, how should Select() be used if a time-out is required
that is not infinite, but longer than 35 minutes?

When I first came across this problem, I thought,
“Well, this is unfortunate, but not a big deal. I’ll simply
write a wrapper for Select() that transparently restarts the
call if it times out after 35 minutes. Then I change all calls
to Select() in the code to call that wrapper instead.”

FI
G

 2

The doSelect() function
public void doSelect(IList checkRead, IList checkWrite,
 	 IList checkError, int milliseconds)
{
 ArrayList readCopy; // Copies of the three parameters because
 ArrayList writeCopy; // Select() clobbers them.
 ArrayList errorCopy;

 if (milliseconds <= 0) {
 // Simulate waiting forever.
 do {
 // Make copy of the three lists here...

 Select(readCopy, writeCopy, errorCopy, Int32.MaxValue);
 } while ((readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy.Count == 0));
 } else {
 // Deal with non-infinite timouts.
 while ((milliseconds > Int32.MaxValue / 1000) &&
 readCopy == null || readCopy.Count == 0) &&
 writeCopy == null || writeCopy.Count == 0) &&
 errorCopy == null || errorCopy.Count == 0)) {

 // Make a copy of the three lists here...

 Select(readCopy, writeCopy, errorCopy,
 (Int32.MaxValue / 1000) * 1000);
 milliseconds -= Int32.MaxValue / 1000;
 }
 if ((readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy == 0)) {
 Select(checkRead, checkWrite, checkError, milliseconds * 1000);
 }
 }
 // Copy the three lists back into the original parameters here...
}

28 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

So, let’s take a look at creating this drop-in replace-
ment, called doSelect(), shown in figure 2. The signature
(prototype) of the call is the same as for the normal
Select(), but we want to ensure that negative time-out
values cause it to wait forever and that it is possible to
wait for more than 35 minutes. Using a granularity of
milliseconds for the time-out allows a time-out of a little
more than 24 days, which I will assume is sufficient.

Note the terminating condition of the do-loop in the
code in figure 2: it is necessary to check the length of
all three lists because Select() does not indicate whether
it returned because of a time-out or because a socket is
ready. Moreover, if the caller is not interested in using
one or two of the three lists, it can pass either null or an
empty list. This forces the code to use the awkward test
to control the loop because, when Select() returns, one or
two of the three lists may be null (if the caller passed null)
or may be not null, but empty.

The problem here is that there are two legal param-
eter values for one and the same thing: both null and
an empty list indicate that the caller is not interested in
monitoring one of the passed lists. In itself, this is not a
big deal but, if I want to reuse Select() as in the preceding
code, it turns out to be rather inconvenient.

The second part of the code, which deals with restart-
ing Select() for time-outs greater than 35 minutes, also
gets rather complex, both because of the awkward test
needed to detect whether a time-out has indeed occurred
and because of the need to deal with the case in which
milliseconds * 1000 does not divide Int.MaxValue without
leaving a remainder.

We are not finished yet: the preceding code still con-
tains comments in place of copying the input parameters
and copying the results back into those parameters.
One would think that this is easy: simply call a Clone()
method, as one would do in Java. Unlike Java, however,
.NET’s type Object (which is the ultimate base type of

all types) does not provide a Clone method; instead, for
a type to be cloneable, it must explicitly derive from
an ICloneable interface. The formal parameter type of
the lists passed to Select() is IList, which is an interface
and, therefore, abstract: I cannot instantiate things of
type IList, only things derived from IList. The problem
is that IList does not derive from ICloneable, so there is
no convenient way to copy an IList, except by explicitly
iterating over the list contents and doing the job element
by element. Similarly, there is no method on IList that
would allow it to be easily overwritten with the contents
of another list (which is necessary to copy the results back
into the parameters before doSelect() returns). Again, the
only way to achieve this is to iterate and copy the ele-
ments one at a time.

Another problem with Select() is that it accepts lists
of sockets. Lists allow the same socket to appear more
than once in each list, but doing so doesn’t make sense:

conceptually, what is passed are sets of sockets. So, why
does Select() use lists? The answer is simple: the .NET
collection classes do not include a set abstraction. Using
IList to model a set is unfortunate: it creates a semantic
problem because lists allow duplicates. (The behavior of
Select() in the presence of duplicates is anybody’s guess
because it is not documented; checking against the actual
behavior of the implementation is not all that useful
because, in the absence of documentation, the behavior
can change without warning.) Using IList to model a set is
also detrimental in other ways: when a connection closes,
the server must remove the corresponding socket from
its lists. Doing so requires the server either to perform a
linear search (which does not scale well) or to maintain

API
Design Matters

Poor APIs lead
directly to increased
development cost.

ACM QUEUE May/June 2007 29 more queue: www.acmqueue.com

the lists in sorted order so it can use a split search (which
is more work). This is a good example of how design flaws
have a tendency to spread and cause collateral damage:
an oversight in one API causes grief in an unrelated API.

I will spare you the details of how to complete the
wrapper code. Suffice it to say that the supposedly simple
wrapper I set out to write, by the time I had added param-
eter copying, error handling, and a few comments, ran to
nearly 100 lines of fairly complex code. All this because of
a few seemingly minor design flaws:
• Select() overwrites its arguments.
• �Select() does not provide a simple indicator that would

allow the caller to distinguish a return because of a
time-out from a return because a socket is ready.

• �Select() does not allow a time-out longer than 35 min-
utes.

• Select() uses lists instead of sets of sockets.
Here is what Select() could look like instead:

public static int
Select(ISet checkRead, ISet checkWrite,
 Timespan seconds,
 out ISet readable, out ISet writeable,
 out ISet error);

With this version, the caller provides sets to monitor
sockets for reading and writing, but no error set: sock-
ets in both the read set and the write set are automati-
cally monitored for errors. The time-out is provided as a
Timespan (a type provided by .NET) that has resolution
down to 100 nanoseconds, a range of more than 10 mil-
lion days, and can be negative (or null) to cover the “wait
forever” case. Instead of overwriting its arguments, this
version returns the sockets that are ready for reading,
writing, and have encountered an error as separate sets,
and it returns the number of sockets that are ready or
zero, in which case the call returned because the time-out
was reached. With this simple change, the usability prob-
lems disappear and, because the caller no longer needs to
copy the arguments, the code is far more efficient as well.

There are many other ways to fix the problems with
Select() (such as the approach used by epoll()). The point
of this example is not to come up with the ultimate ver-
sion of Select(), but to demonstrate how a small number
of minor oversights can quickly add up to create code
that is messy, hard to maintain, error prone, and ineffi-
cient. With a slightly better interface to Select(), none of
the code I outlined here would be necessary, and I (and
probably many other programmers) would have saved
considerable time and effort.

The Cost of Poor APIs
The consequences of poor API design are numerous and
serious. Poor APIs are difficult to program with and often
require additional code to be written, as in the preced-
ing example. If nothing else, this additional code makes
programs larger and less efficient because each line of
unnecessary code increases working set size and reduces
CPU cache hits. Moreover, as in the preceding example,
poor design can lead to inherently inefficient code by
forcing unnecessary data copies. (Another popular design
flaw—namely, throwing exceptions for expected out
comes—also causes inefficiencies because catching and
handling exceptions is almost always slower than testing
a return value.)

The effects of poor APIs, however, go far beyond inef-
ficient code: poor APIs are harder to understand and more
difficult to work with than good ones. In other words,
programmers take longer to write code against poor
APIs than against good ones, so poor APIs directly lead
to increased development cost. Poor APIs often require
not only extra code, but also more complex code that
provides more places where bugs can hide. The cost is
increased testing effort and increased likelihood for bugs
to go undetected until the software is deployed in the
field, when the cost of fixing bugs is highest.

Much of software development is about creating
abstractions, and APIs are the visible interfaces to these
abstractions. Abstractions reduce complexity because they
throw away irrelevant detail and retain only the informa-
tion that is necessary for a particular job. Abstractions do
not exist in isolation; rather, we layer abstractions on top
of each other. Application code calls higher-level librar-
ies that, in turn, are often implemented by calling on the
services provided by lower-level libraries that, in turn, call
on the services provided by the system call interface of an
operating system. This hierarchy of abstraction layers is
an immensely powerful and useful concept. Without it,
software as we know it could not exist because program-
mers would be completely overwhelmed by complexity.

The lower in the abstraction hierarchy an API defect
occurs, the more serious are the consequences. If I
mis-design a function in my own code, the only per-
son affected is me, because I am the only caller of the
function. If I mis-design a function in one of our proj-
ect libraries, potentially all of my colleagues suffer. If
I mis-design a function in a widely published library,
potentially tens of thousands of programmers suffer.

Of course, end users also suffer. The suffering can take
many forms, but the cumulative cost is invariably high.
For example, if Microsoft Word contains a bug that causes

30 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

it to crash occasionally because of a mis-designed API,
thousands or hundreds of thousands of end users lose
valuable time. Similarly, consider the numerous security
holes in countless applications and system software that,
ultimately, are caused by unsafe I/O and string manipula-
tion functions in the standard C library (such as scanf()
and strcpy()). The effects of these poorly designed APIs are
still with us more than 30 years after they were created,
and the cumulative cost of the design defects easily runs
to many billions of dollars.

Perversely, layering of abstractions is often used to
trivialize the impact of a bad API: “It doesn’t matter—we
can just write a wrapper to hide the problems.” This argu-
ment could not be more wrong because it ignores the cost
of doing so. First, even the most efficient wrapper adds
some cost in terms of memory and execution speed (and
wrappers are often far from efficient). Second, for a widely
used API, the wrapper will be written thousands of times,
whereas getting the API right in the first place needs to be
done only once. Third, more often than not, the wrapper
creates its own set of problems: the .NET Select() function
is a wrapper around the underlying C function; the .NET
version first fails to fix the poor interface of the original,
and then adds its own share of problems by omitting the
return value, getting the time-out wrong, and passing lists
instead of sets. So, while creating a wrapper can help to
make bad APIs more usable, that does not mean that bad
APIs do not matter: two wrongs don’t make a right, and
unnecessary wrappers just lead to bloatware.

How to do Better
There are a few guidelines to use when designing an API.
These are not surefire ways to guarantee success, but
being aware of these guidelines and taking them explic-
itly into account during design makes it much more likely
that the result will turn out to be usable. The list is neces-
sarily incomplete—doing the topic justice would require

a large book. Nevertheless, here are a few of my favorite
things to think about when creating an API.

An API must provide sufficient functionality for the
caller to achieve its task. This seems obvious: an API that
provides insufficient functionality is not complete. As
illustrated by the inability of Select() to wait more than
35 minutes, however, such insufficiency can go undetec
ted. It pays to go through a checklist of functionality dur-
ing the design and ask, “Have I missed anything?”

An API should be minimal, without imposing undue
inconvenience on the caller. This guideline simply says
“smaller is better.” The fewer types, functions, and
parameters an API uses, the easier it is to learn, remember,
and use correctly. This minimalism is important. Many
APIs end up as a kitchen sink of convenience func-
tions that can be composed of other, more fundamental
functions. (The C++ standard string class with its more
than 100 member functions is an example. After many
years of programming in C++, I still find myself unable
to use standard strings for anything nontrivial without
consulting the manual.) The qualification of this guide-
line, without imposing undue inconvenience on the caller, is

important because it draws attention to real-world use
cases. To design an API well, the designer must have an
understanding of the environment in which the API will
be used and design to that environment. Whether or
not to provide a nonfundamental convenience func-
tion depends on how often the designer anticipates that
function will be needed. If the function will be used
frequently, it is worth adding; if it is used only occasion-
ally, the added complexity is unlikely to be worth the rare
gain in convenience.

The Unix kernel violates this guideline with wait(),
waitpid(), wait3(), and wait4(). The wait4() function is

API
Design Matters

The extent to which

an API sets policy

has profound
influence on

its usability.

ACM QUEUE May/June 2007 31 more queue: www.acmqueue.com

sufficient because it can be used to implement the func-
tionality of the first three. There is also waitid(), which
could almost, but not quite, be implemented in terms of
wait4(). The caller has to read the documentation for all
five functions in order to work out which one to use. It
would be simpler and easier for the caller to have a single
combined function instead. This is also an example of
how concerns about backward compatibility erode APIs
over time: the API accumulates crud that, eventually, does
more damage than the good it ever did by remaining
backward compatible. (And the sordid history of stum-
bling design remains for all the world to see.)

APIs cannot be designed without an understanding
of their context. Consider a class that provides access to
a set of name–value pairs of strings, such as environment
variables:

class NVPairs {
 public string lookup(string name);
 // ...
}

The lookup method provides access to the value stored
by the named variable. Obviously, if a variable with the
given name is set, the function returns its value. How
should the function behave if the variable is not set?
There are several options:
• Throw a VariableNotSet exception.
• Return null.
• Return the empty string.

Throwing an exception is appropriate if the designer
anticipates that looking for a variable that isn’t there
is not a common case and likely to indicate something
that the caller would treat as an error. If so, throwing an
exception is exactly the right thing because exceptions
force the caller to deal with the error. On the other hand,
the caller may look up a variable and, if it is not set,
substitute a default value. If so, throwing an exception is
exactly the wrong thing because handling an exception
breaks the normal flow of control and is more difficult
than testing for a null or empty return value.

Assuming that we decide not to throw an exception if
a variable is not set, two obvious choices indicate that a
lookup failed: return null or the empty string. Which one
is correct? Again, the answer depends on the anticipated
use cases. Returning null allows the caller to distinguish a
variable that is not set at all from a variable that is set to
the empty string, whereas returning the empty string for
variables that are not set makes it impossible to distin-
guish a variable that was never set from a variable that

was explicitly set to the empty string. Returning null is
necessary if it is deemed important to be able to make
this distinction; but, if the distinction is not important, it
is better to return the empty string and never return null.

General-purpose APIs should be “policy-free;” special-
purpose APIs should be “policy-rich.” In the preceding
guideline, I mentioned that correct design of an API
depends on its context. This leads to a more fundamental
design issue—namely, that APIs inevitably dictate policy:
an API performs optimally only if the caller’s use of the
API is in agreement with the designer’s anticipated use
cases. Conversely, the designer of an API cannot help
but dictate to the caller a particular set of semantics and
a particular style of programming. It is important for
designers to be aware of this: the extent to which an API
sets policy has profound influence on its usability.

If little is known about the context in which an API
is going to be used, the designer has little choice but to
keep all options open and allow the API to be as widely
applicable as possible. In the preceding lookup example,
this calls for returning null for variables that are not set,
because that choice allows the caller to layer its own
policy on top of the API; with a few extra lines of code,
the caller can treat lookup of a nonexistent variable as a
hard error, substitute a default value, or treat unset and
empty variables as equivalent. This generality, however,
comes at a price for those callers who do not need the
flexibility because it makes it harder for the caller to treat
lookup of a nonexistent variable as an error.

This design tension is present in almost every API—the
line between what should and should not be an error is
very fine, and placing the line incorrectly quickly causes
major pain. The more that is known about the context of
an API, the more “fascist” the API can become—that is,
the more policy it can set. Doing so is doing a favor to the
caller because it catches errors that otherwise would go
undetected. With careful design of types and parameters,
errors can often be caught at compile time instead of
being delayed until runtime. Making the effort to do this
is worthwhile because every error caught at compile time
is one less bug that can incur extra cost during testing or
in the field.

The Select() API fails this guideline because, by
overwriting its arguments, it sets a policy that is in direct
conflict with the most common use case. Similarly, the
.NET Receive() API commits this crime for nonblocking
sockets: it throws an exception if the call worked but no
data is ready, and it returns zero without an exception if
the connection is lost. This is the precise opposite of what
the caller needs, and it is sobering to look at the mess of

32 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

control flow this causes for the caller.
Sometimes, the design tension cannot be resolved

despite the best efforts of the designer. This is often the
case when little can be known about context because
an API is low-level or must, by its nature, work in many
different contexts (as is the case for general-purpose
collection classes, for example). In this case, the strat-
egy pattern can often be used to good effect. It allows
the caller to supply a policy (for example, in the form
of a caller-provided comparison function that is used to
maintain ordered collections) and so keeps the design
open. Depending on the programming language, caller-
provided policies can be implemented with callbacks,
virtual functions, delegates, or template parameters
(among others). If the API provides sensible defaults, such
externalized policies can lead to more flexibility without
compromising usability and clarity. (Be careful, though,
not to “pass the buck,” as described later in this article.)

APIs should be designed from the perspective of the
caller. When a programmer is given the job of creating
an API, he or she is usually immediately in problem-solv-
ing mode: What data structures and algorithms do I need
for the job, and what input and output parameters are
necessary to get it done? It’s all downhill from there: the
implementer is focused on solving the problem, and the
concerns of the caller are quickly forgotten. Here is a typi-
cal example of this:

makeTV(false, true);

This evidently is a function call that creates a TV. But
what is the meaning of the parameters? Compare with
the following:

makeTV(Color, FlatScreen);

The second version is much more readable to the caller:

even without reading the manual, it is obvious that the
call creates a color flat-screen TV. To the implementer,
however, the first version is just as usable:

void makeTV(bool isBlackAndWhite,
 bool isFlatScreen)
{ /* ... */ }

The implementer gets nicely named variables that
indicate whether the TV is black and white or color, and
whether it has a flat screen or a conventional one, but
that information is lost to the caller. The second version
requires the implementer to do more work—namely, to
add enum definitions and change the function signature:

enum ColorType { Color, BlackAndWhite };
enum ScreenType { CRT, FlatScreen };
void makeTV(ColorType col, ScreenType st);

This alternative definition requires the implementer to
think about the problem in terms of the caller. However,
the implementer is preoccupied with getting the TV cre-
ated, so there is little room in the implementer’s mind for
worrying about somebody else’s problems.

A great way to get usable APIs is to let the customer
(namely, the caller) write the function signature, and to
give that signature to a programmer to implement. This
step alone eliminates at least half of poor APIs: too often,
the implementers of APIs never use their own creations,
with disastrous consequences for usability. Moreover,
an API is not about programming, data structures, or
algorithms—an API is a user interface, just as much as a
GUI is. The user at the using end of the API is a program-
mer—that is, a human being. Even though we tend to
think of APIs as machine interfaces, they are not: they are
human–machine interfaces.

What should drive the design of APIs is not the needs
of the implementer. After all, the implementer needs
to implement the API only once, but the callers of the
API need to call it hundreds or thousands of times. This
means that good APIs are designed with the needs of the
caller in mind, even if that makes the implementer’s job
more complicated.

Good APIs don’t pass the buck. There are many ways
to “pass the buck” when designing an API. A favorite way
is to be afraid of setting policy: “Well, the caller might
want to do this or that, and I can’t be sure which, so
I’ll make it configurable.” The typical outcome of this
approach is functions that take five or ten parameters.
Because the designer does not have the spine to set policy

API
Design Matters

ACM QUEUE May/June 2007 33 more queue: www.acmqueue.com

and be clear about what the API should and should
not do, the API ends up with far more complexity than
necessary. This approach also violates minimalism and
the principle of “I should not pay for what I don’t use”:
if a function has ten parameters, five of which are irrele
vant for the majority of use cases, callers pay the price
of supplying ten parameters every time they make a call,
even when they could not care less about the functional-
ity provided by the extra five parameters. A good API is
clear about what it wants to achieve and what it does not
want to achieve, and is not afraid to be up-front about it.
The resulting simplicity usually amply repays the minor
loss of functionality, especially if the API has well-chosen
fundamental operations that can easily be composed into
more complex ones.

Another way of passing the buck is to sacrifice usabil-
ity on the altar of efficiency. For example, the CORBA
C++ mapping requires callers to fastidiously keep track of
memory allocation and deallocation responsibilities; the
result is an API that makes it incredibly easy to corrupt
memory. When benchmarking the mapping, it turns out
to be quite fast because it avoids many memory alloca-
tions and deallocations. The performance gain, however,
is an illusion because, instead of the API doing the dirty
work, it makes the caller responsible for doing the dirty
work—overall, the same number of memory allocations
takes place regardless. In other words, a safer API could
be provided with zero runtime overhead. By benchmark-
ing only the work done inside the API (instead of the
overall work done by both caller and API), the designers
can claim to have created a better-performing API, even
though the performance advantage is due only to selec-
tive accounting.

The original C version of select() exhibits the same
approach:

int select(int nfds, fd_set *readfds,
 fd_set *writefds, fd_set *exceptfds,
 struct timeval *timeout);

Like the .NET version, the C version also over-
writes its arguments. This again reflects the needs of
the implementer rather than the caller: it is easier and
more efficient to clobber the arguments than to allocate
separate output arrays of file descriptors, and it avoids the
problems of how to deallocate the output arrays again. All
this really does, however, is shift the burden from imple
menter to caller—at a net efficiency gain of zero.

The Unix kernel also is not without blemish and
passes the buck occasionally: many a programmer has

cursed the decision to allow some system calls to be inter-
rupted, forcing programmers to deal explicitly with EINTR
and restart interrupted system calls manually, instead of
having the kernel do this transparently.

Passing the buck can take many different forms, the
details of which vary greatly from API to API. The key
questions for the designer are: Is there anything I could
reasonably do for the caller I am not doing? If so, do I
have valid reasons for not doing it? Explicitly asking these
questions makes design the result of a conscious process
and discourages “design by accident.”

APIs should be documented before they are imple-
mented. A big problem with API documentation is that it
is usually written after the API is implemented, and often
written by the implementer. The implementer, however,
is mentally contaminated by the implementation and
will have a tendency simply to write down what he or
she has done. This often leads to incomplete documen-
tation because the implementer is too familiar with the
API and assumes that some things are obvious when they
are not. Worse, it often leads to APIs that miss important
use cases entirely. On the other hand, if the caller (not
the implementer) writes the documentation, the caller
can approach the problem from a “this is what I need”
perspective, unburdened by implementation concerns.
This makes it more likely that the API addresses the needs
of the caller and prevents many design flaws from arising
in the first place.

Of course, the caller may ask for something that turns
out to be unreasonable from an implementation perspec-
tive. Caller and implementer can then iterate over the
design until they reach agreement. That way, neither
caller nor implementation concerns are neglected.

Once documented and implemented, the API should
be tried out by someone unfamiliar with it. Initially, that
person should check how much of the API can be under-
stood without looking at the documentation. If an API
can be used without documentation, chances are that it is
good: a self-documenting API is the best kind of API there
is. While test driving the API and its documentation, the
user is likely to ask important “what if” questions: What
if the third parameter is null? Is that legal? What if I want
to wait indefinitely for a socket to become ready? Can
I do that? These questions often pinpoint design flaws,
and a cross-check with the documentation will confirm
whether the questions have answers and whether the
answers are reasonable.

Make sure that documentation is complete, particularly
with respect to error behavior. The behavior of an API
when things go wrong is as much a part of the formal

34 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

contract as when things go right. Does the documenta-
tion say whether the API maintains the strong excep-
tion guarantee? Does it detail the state of out and in-out
parameters in case of an error? Does it detail any side
effects that may linger after an error has occurred? Does
it provide enough information for the caller to make
sense of an error? (Throwing a DidntWork exception from
all socket operations just doesn’t cut it!) Programmers do
need to know how an API behaves when something goes
wrong, and they do need to get detailed error informa-
tion they can process programmatically. (Human-readable
error messages are nice for diagnostics and debugging,
but not nice if they are the only things available—there
is nothing worse than having to write a parser for error
strings just so I can control the flow of my program.)

Unit and system testing also have an impact on APIs
because they can expose things that no one thought of
earlier. Test results can help improve the documentation
and, therefore, the API. (Yes, the documentation is part of
the API.)

The worst person to write documentation is the
implementer, and the worst time to write documentation
is after implementation. Doing so greatly increases the
chance that interface, implementation, and documenta-
tion will all have problems.

Good APIs are ergonomic. Ergonomics is a major field
of study in its own right, and probably one of the hardest
parts of API design to pin down. Much has been written
about this topic in the form of style guides that define
naming conventions, code layout, documentation style,
and so on. Beyond mere style issues though, achieving
good ergonomics is hard because it raises complex cogni-
tive and psychological issues. Programmers are humans
and are not created with cookie cutters, so an API that
seems fine to one programmer can be perceived as only
so-so by another.

Especially for large and complex APIs, a major part of

ergonomics relates to consistency. For example, an API is
easier to use if its functions always place parameters of a
particular type in the same order. Similarly, APIs are easier
to use if they establish naming themes that group related
functions together with a particular naming style. The
same is true for APIs that establish simple and uniform
conventions for related tasks and that use uniform error
handling.

Consistency is important because not only does it
make things easier to use and memorize, but it also
enables transference of learning: having learned a part of
an API, the caller also has learned much of the remainder
of the API and so experiences minimal friction. Transfer-
ence is important not only within APIs but also across
APIs—the more concepts APIs can adopt from each other,
the easier it becomes to master all of them. (The Unix
standard I/O library violates this idea in a number of
places. For example, the read() and write() system calls
place the file descriptor first, but the standard library I/O
calls, such as fgets() and fputs(), place the stream pointer
last, except for fscanf() and fprintf(), which place it first.
This lack of parallelism is jarring to many people.)

Good ergonomics and getting an API to “feel” right
require a lot of expertise because the designer has to
juggle numerous and often conflicting demands. Finding
the correct tradeoff among these demands is the hallmark
of good design.

API Change Requires Cultural Change
I am convinced that it is possible to do better when it
comes to API design. Apart from the nitty-gritty techni-
cal issues, I believe that we need to address a number of
cultural issues to get on top of the API problem. What we
need is not only technical wisdom, but also a change in
the way we teach and practice software engineering.

Education
Back in the late ’70s and early ’80s, when I was cutting
my teeth as a programmer and getting my degree, much
of the emphasis in a budding programmer’s education
was on data structures and algorithms. They were the
bread and butter of programming, and a good under-
standing of data structures such as lists, balanced trees,
and hash tables was essential, as was a good under-
standing of common algorithms and their performance
tradeoffs. These were also the days when system libraries
provided only the most basic functions, such as simple
I/O and string manipulation; higher-level functions such
as bsearch() and qsort() were the exception rather than
the rule. This meant that it was de rigueur for a competent

API
Design Matters

ACM QUEUE May/June 2007 35 more queue: www.acmqueue.com

programmer to know how to write various data structures
and manipulate them efficiently.

We have moved on considerably since then. Virtually
every major development platform today comes with
libraries full of pre-canned data structures and algorithms.
In fact, these days if I catch a programmer writing a
linked list, that person had better have a very good reason
for doing so instead of using an implementation provided
by a system library.

Similarly, in the ’70s and ’80s, if I wanted to create
software, I had to write pretty much everything from
scratch: if I needed encryption, I wrote it from scratch;
if I needed compression, I wrote it from scratch; if I
needed inter-process communication, I wrote it from
scratch. All this has changed dramatically with the open
source movement. Today, open source is available for
almost every imaginable kind of reusable functionality.
As a result, the process of creating software has changed
considerably: instead of creating functionality, much of
today’s software engineering is about integrating existing
functionality or about repackaging it in some way. To
put it differently: API design today is much more impor-
tant than it was 20 years ago, not only because we are
designing more APIs, but also because these APIs tend to
provide access to much richer and more complex func-
tionality than they used to.

Looking at the curriculum of many universities, it
seems that this shift in emphasis has gone largely unno-
ticed. In my days as an undergraduate, no one ever both-
ered to explain how to decide whether something should
be a return value or an out parameter, how to choose
between raising an exception and returning an error code,
or how to decide if it might be appropriate for a function
to modify its arguments. Little seems to have changed
since then: my son, who is currently working toward a
software engineering degree at the same university where
I earned my degree, tells me that still no one bothers to
explain these things. Little wonder then that we see so
many poorly designed APIs: it is not reasonable to expect
programmers to be good at something they have never
been taught.

Yet, good API design, even though complex, is some-
thing that can be taught. If undergraduates can learn
how to write hash tables, they can also learn when it is
appropriate to throw an exception as opposed to return-
ing an error code, and they can learn to distinguish a
poor API from a good one. What is needed is recognition
of the importance of the topic; much of the research and
wisdom are available already—all we need to do is pass
them on.

Career Path
I am 47, and I write code. Looking around me, I realize
how unusual this is: in my company, all of my program-
ming colleagues are younger than I and, when I look at
former programming colleagues, most of them no longer
write code; instead, they have moved on to different posi-
tions (such as project manager) or have left the industry
entirely. I see this trend everywhere in the software indus-
try: older programmers are rare, quite often because no
career path exists for them beyond a certain point. I recall
how much effort it took me to resist a forced “promo-
tion” into a management position at a former company—
I ended up staying a programmer, but was told that future
pay increases were pretty much out of the question if I
was unwilling to move into management.

There is also a belief that older programmers “lose
the edge” and don’t cut it anymore. That belief is mis-
taken, in my opinion: older programmers may not burn
as much midnight oil as younger ones, but that’s not
because they are old, but because they get the job done
without having to stay up past midnight.

This loss of older programmers is unfortunate, particu-
larly when it comes to API design. While good API design
can be learned, there is no substitute for experience.
Many good APIs were created by programmers who had
to suffer under a bad one and then decided to redo the
job, but properly this time. It takes time and a healthy
dose of “once burned, twice shy” to gather the expertise
that is necessary to do better. Unfortunately, the industry
trend is to promote precisely its most experienced people
away from programming, just when they could put their
accumulated expertise to good use.

Another trend is for companies to promote their best
programmers to designer or system architect. Typically,
these programmers are farmed out to various projects as
consultants, with the aim of ensuring that the project
takes off on the right track and avoids mistakes it might
make without the wisdom of the consultants. The intent
of this practice is laudable, but the outcome is usually
sobering: because the consultants are so valuable, having
given their advice, they are moved to the next project
long before implementation is finished, let alone testing
and delivery. By the time the consultants have moved on,
any problems with their earlier sage advice are no longer
their problems, but the problems of a project they have
long since left behind. In other words, the consultants
never get to live through the consequences of their own
design decisions, which is a perfect way to breed them
into incompetence. The way to keep designers sharp and
honest is to make them eat their own dog food. Any pro-

36 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

API
Design Matters

cess that deprives designers of that feedback is ultimately
doomed to failure.

External Controls
Years ago, I was working on a large development project
that, for contractual reasons, was forced into an operat-
ing-system upgrade during a critical phase shortly before
a delivery deadline. After the upgrade, the previously
working system started behaving strangely and occasion-
ally produced random and inexplicable failures. The pro-
cess of tracking down the problem took nearly two days,
during which a large team of programmers was mostly
twiddling its thumbs. Ultimately, the cause turned out
to be a change in the behavior of awk’s index() function.
Once we identified the problem, the fix was trivial—we
simply installed the previous version of awk. The point
is that a minor change in the semantics of a minor part
of an API had cost the project thousands of dollars, and
the change was the result of a side effect of a programmer
fixing an unrelated bug.

This anecdote hints at a problem we will increas-
ingly have to face in the future. With the ever-growing
importance of computing, there are APIs whose correct
functioning is important almost beyond description.
For example, consider the importance of APIs such as
the Unix system call interface, the C library, Win32, or
OpenSSL. Any change in interface or semantics of these
APIs incurs an enormous economic cost and can intro-
duce vulnerabilities. It is irresponsible to allow a single
company (let alone a single developer) to make changes
to such critical APIs without external controls.

As an analogy, a building contractor cannot simply try
out a new concrete mixture to see how well it performs.
To use a new concrete mixture, a lengthy testing and
approval process must be followed, and failure to follow
that process incurs criminal penalties. At least for mis-
sion-critical APIs, a similar process is necessary, as a mat-

ter of self-defense: if a substantial fraction of the world’s
economy depends on the safety and correct functioning
of certain APIs, it stands to reason that any changes to
these APIs should be carefully monitored.

Whether such controls should take the form of leg-
islation and criminal penalties is debatable. Legislation
would likely introduce an entirely new set of problems,
such as stifling innovation and making software more
expensive. (The ongoing legal battle between Microsoft
and the European Union is a case in point.) I see a real
danger of just such a scenario occurring. Up to now, we
have been lucky, and the damage caused by malware such
as worms has been relatively minor. We won’t be lucky
forever: the first worm to exploit an API flaw to wipe out
more than 10 percent of the world’s PCs would cause eco-
nomic and human damage on such a scale that legislators
would be kicked into action. If that were to happen, we
would likely swap one set of problems for another one
that is worse.

What are the alternatives to legislation? The open
source community has shown the way for many years:
open peer review of APIs and implementations has
proven an extremely effective way to ferret out design
flaws, inefficiencies, and security holes. This process
avoids the problems associated with legislation, catches
many flaws before an API is widely used, and makes it
more likely that, when a zero-day defect is discovered, it
is fixed and a patch distributed promptly.

In the future, we will likely see a combination of both
tighter legislative controls and more open peer review.
Finding the right balance between the two is crucial to
the future of computing and our economy. API design
truly matters—but we had better realize it before events
run away with things and remove any choice. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MICHI HENNING (michi@zeroc.com) is chief scientist of
ZeroC. From 1995 to 2002, he worked on CORBA as a mem-
ber of the Object Management Group’s architecture board
and as an ORB implementer, consultant, and trainer. With
Steve Vinoski, he wrote Advanced CORBA Programming with
C++ (Addison-Wesley, 1999). Since joining ZeroC, he has
worked on the design and implementation of Ice, ZeroC’s
next-generation middleware, and in 2003 co-authored “Dis-
tributed Programming with Ice.” He holds an honors degree
in computer science from the University of Queensland,
Australia.
© 2007 ACM 1542-7730/07/0500 $5.00

The ACM online books program includes free
and unlimited access to 600 online books
from Safari® Books Online, featuring leading
publishers including O’Reilly. Safari puts a
complete IT and business e-reference
library right on your desktop. Available to
ACM Professional Members, Safari will help
you zero in on exactly the information you
need, right when you need it.

600 FREE Online Books from Safari

Over 2,200 FREE Online Courses from SkillSoft

The ACM online course program features free and unlimited access to over 2,200 online courses from
SkillSoft, a leading provider of e-learning solutions. This new collection of courses
offers a host of valuable resources that will help to maximize your learning expe-
rience. Available on a wide range of information technology and business sub-
jects, these courses are open to ACM Professional and Student Members.

SkillSoft courses offer a number of valuable features, including:
• Job Aids, tools and forms that complement and support course content
• Skillbriefs, condensed summaries of the instructional content of a course topic
• Mentoring via email, online chats, threaded discussions - 24/7
• Exercises, offering a thorough interactive practice session appropriate to the
learning points covered previously in the course

• Downloadable content for easy and convenient access

Newly Expanded
Online Books
& Courses Programs!ACM’s

pd.acm.org
www.acm.org/join

HelpingMembers Meet Today’s Career Challenges

All Professional and Student Members also have
free and unlimited access to 500 online books
from Books24x7®, a rotating collection of com-
plete unabridged books on the hottest comput-
ing topics. This virtual library puts information
at your fingertips. Search, bookmark, or read
cover-to-cover. Your bookshelf allows for quick
retrieval and bookmarks let you easily return to
specific places in a book.

introducing...

500 FREEOnline Books fromBooks24x7

http://www.acm.org/join

38 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

The Seven Deadly Sins of Linux Security

BOB TOXEN, HORIZON NETWORK SECURITY

T
he problem with security advice is that there is too
much of it and that those responsible for security cer-
tainly have too little time to implement all of it. The

challenge is to determine what the biggest risks are and to
worry about those first and about others as time permits.
Presented here are the seven common problems—the
seven deadly sins of security—most likely to allow major
damage to occur to your system or bank account. If any

of these are a problem on any of your systems, you will
want to take care of them immediately.

These seven deadly sins are based on my research and
experience, which includes too many people who wait
until after their Linux or Unix systems have suffered secu-
rity breaches before they take action to increase system
security, and on forensics analysis and discussions with
systems administrators. Most of these sins and their solu-

ACM QUEUE May-June 2007 39 more queue: www.acmqueue.com

The Seven Deadly Sins of Linux Security

1
2

3

5

6

7

4

Avoid these

common security risks

like the devil

tions also apply to Macs, Windows, and other platforms.
They are not ordered by risk level because committing

any one of them will likely allow your system to be com-
promised if it is accessible from the Internet. Even if you
are behind a firewall, if you receive any untrusted data
from the Internet, such as Web pages, e-mail, or instant
messages, your system is at great risk. Avoid these sins like
the devil.

Without further ado, here are the seven deadly sins
and what to do about them.

SIN ONE: Weak Passwords
As a systems administrator, you are aware of the system
breaches possible on your Linux or Unix machine. You
have taken the time and effort to devise a difficult-to-
guess root password that uses at least 12 characters that

40 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

include at least two words or no words from the dic-
tionary, uses both letters and digits, and has upper- and
lowercase letters and some punctuation characters.

I still run into clients with passwords so simple that
any hacker could break them in a few minutes with a
tweaked version of ssh that guesses different passwords.
Such hacker tools can be found on the Web easily with
Google or built by any C or C++ programmer. On Inter-
net-accessible systems, I have seen root passwords consist-
ing of a word followed by a small number, where that
word is related to the company, what it does, who is in it,
or where it is. A good hacker will go to your Web site and
see all of this information, then feed it into a password-
cracking program.

Another common mistake is to use the same password
or very similar passwords for root accounts (or other
important accounts) on different systems. Thus, a cracker
who breaches one system through a means other than
password guessing will then be able to install a Trojaned
server for ssh, FTP, or IMAP, or a Trojaned CGI program
on that system, see what passwords you use, and try them
on the other systems. I have seen this happen many
times.

A variation is to use ssh public keys to allow an
account on one system to ssh into another system
without supplying any password. At the very least, pick
a moderately hard-to-crack password for your ssh keys. If
you must have an automatic program use ssh without a
password to ssh into another system, then create either a

separate nonroot account on the target system or an alter-
nate account with UID 0 but a login “shell” that does just
what is needed, such as doing a backup.

An even better solution, say for a remote backup,
would be for the system needing to be backed up to ssh
into the system receiving the backups as a unique unpriv-
ileged account for this purpose and copy an encrypted
version of the backup. Thus, if the backup server is com-
promised, no confidential data will be obtained.

Let’s hope your root password is awesome and that no
one could guess it in 100 years. OK, some obsessive with
a program such as Crack could destroy it in a few days
except that you use shadow passwords, but that’s another
story. It is critically important to select good passwords.

How are your users doing? Choke, cough, gag, hack.
Every account is a possible entry point. Have your users
followed your advice, company policy, or threats to
devise good passwords? Are they being as careful as you
are? Probably not. Now it is your turn to don the black
hat and think like your enemy.

Can you break into your users’ accounts by using a
password-cracking program? You definitely will need to
get written management approval to conduct this level
of security audit. There are notable cases of unauthorized
audits landing people in jail or at least on the unem-
ployment rolls. (Randal Schwartz is one. The software
consultant and author was brought to trial for accessing
a password file at Intel in what he says was an attempt to
show lapses in security.)

You might even install a module in the passwd pro-
gram that automatically tries to break a user’s proposed
new password. Though the standard passwd program

The Seven Deadly Sins of Linux Security

Consider how severe the consequences
would be if one account or one system
gets hacked. Can the hacker then get
into other accounts or other systems? If
so, change passwords, ssh usage, etc. so
that the hacker cannot spread the dam-
age to other accounts and systems.

This illustrates the concept of con-
tainment. Accept that some account,
possibly root, on some system will get
compromised. Ensure that the compro-
mise will not spread by doing careful
failure analysis now, before you suffer a
compromise.

TI
P

Protecting every account is critical
because of local root vulnerabilities in
various programs and the Linux kernel
itself. These vulnerabilities allow a hacker
who gets shell access as any user to
make himself or herself root. TI

P

ACM QUEUE May-June 2007 41 more queue: www.acmqueue.com

makes very simple tests, there are more sophisticated
routines that include much of Crack’s capability. One way
to do this is to make use of the cracklib capability in the
PAM (pluggable authentication modules) enhancements
to the passwd program. The cracklib library analyzes
passwords to determine if they can be easily cracked. PAM
offers additional security for Linux and Unix systems.

Edit the /etc/pam.d/passwd file to include the code in
figure 1. This will cause the PAM-enabled passwd program
to load these dynamically loadable program libraries.
PAM now is standard with Red Hat. On some systems
these are in /lib instead of /usr/lib. (Another good source
for PAM information is http://www.sun.com/software/
solaris/pam/.)

On Slackware this capability will be enabled if the fol-
lowing line is present in /etc/login.defs (and the diction-
ary is installed):

CRACKLIB_DICTPATH /var/cache/cracklib/cracklib_dict

Consider restricting which remote systems can ssh
into your systems’ various accounts either through IP
tables firewall rules or by editing your ssh server’s configu-
ration file, /etc/ssh/sshd_config, to limit which remote
systems can ssh in and which accounts they can ssh into,
or use both methods for additional security. Make this list
very short for root (in sshd_config).

sin two: Open Network Ports
Just as every account on your system is a potential path
for a password cracker, every network service is a road to
it. Disable and uninstall services you do not need. Most

Linux distributions and
Unix vendors install tons
of software and services by
default. They deliberately
prefer easy over secure.
Many of these are neither
necessary nor wanted.
Take the time to remove
software and services you

do not need. Better yet, do not
install them to begin with.

To find out which services are being run, use the
netstat -atuv command. Even a home system can have
dozens of different ports open. A large Web server could
have more.

If there are services listed that you do not want to be
provided by this box, disable them. Many distributions
offer a control panel to do this easily, including Red Hat
and Mandriva. You may want to remove the binaries
from the disk or chmod them to 0, especially any that are
set-UID or set-GID.

NFS, finger, the shell, exec, login r* services (rsh, rexec,
and rlogin), FTP, telnet, sendmail, DNS, and linuxconf
are some of the more popular services that get installed
by default on many Linux distributions; at least some of
these should not be enabled for most systems. Most are
controlled by the daemon xinetd; these can be disabled
by editing the /etc/xinetd.d/* scripts.

You do not need the FTP or telnet daemons to use the
respective clients to connect to other systems. You do
not need the sendmail daemon listening on port 25 to
send mail out, to send mail to local users, or to download
mail via POP or IMAP. (You do need to invoke sendmail
periodically to de-spool delayed outgoing mail.) You need
DNS (named, the name daemon) only if other systems
will be querying yours for this data. Most programs
running on your own system will be very happy to read
/etc/resolv.conf and query the main DNS server of your
ISP or organization instead of contacting a named process
running on your system. Coincidentally, named’s ports
are some of the most popular ports that crackers use to
break into systems. If you do need to run named, use the
recently added facilities that allow it to chroot itself and
switch to a nonroot user.

All of these services, except the normal installations
of NFS,1 DNS, and sendmail, are started on demand by
xinetd. They may be turned off by commenting out their
entries under /etc/xinetd.d. Many distributions offer a
control panel or Linuxconf to do this easily, including
Red Hat and Mandriva.

passwd password requisite /usr/lib/security/pam_cracklib.so retry=3
passwd password required /usr/lib/security/pam_pwdb.so use_authtok

FIG 1
Avoid default passwords as if
your job depended on it. TI

P

42 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

The stand-alone services are turned off by altering
their entries under /etc/rc.d or in configuration files
there.

On Red Hat-based systems, issue the following com-
mands to shut down portmap and prevent it from being
restarted on reboot.

/etc/rc.d/init.d/portmap stop
chkconfig --del portmap

An alternative tool is the ASCII menu-based ntsysv
program. Like chkconfig, ntsysv manipulates the sym-
bolic links only under /etc/rc.d/rc[0-6].d, so you also
will need to explicitly shut down the service. To do both
of these, issue the commands

/etc/rc.d/init.d/portmap stop
ntsysv

On other distributions that use System V-style startup
scripts (/etc/rc.d/rc[0-6].d directories for Red Hat deriva-
tions and /etc/rc.[0-b].d for Debian), rename the appro-
priate script under rcX.d (X usually is 3) that starts with a
capital S and has the service name in it. For example,

cd /etc/rc.d/rc3.d
mv S11portmap K11portmap

Just as only scripts starting with S are invoked when
entering the respective run level, scripts starting with K
are invoked when exiting that run level. This is to turn
off daemons that should run only in that run level. For

example, this mechanism will turn off sshd, the ssh
daemon, when switching from run level 3 (multiuser
with networking) to run level s (single-user mode). Just as
a selected Ssomething script can be disabled by renaming
to ssomething, one of these latter scripts can be renamed
from Ksomething to ksomething to disable it.

On Slackware and similar systems, simply comment
out the lines starting them in /etc/rc.d/*. The grep pro-
gram may be used to find these. Be sure to terminate any
of these services that are running on your system after
altering the configuration files.

If you do not want to bother with kill, a simple reboot
will do this and verify that the configuration files were
correctly altered. (Having a set of available rescue disks
before this reboot would be a fine idea.)

To remove these services from your system, you can
use your distribution’s package manager. Red Hat-based
installations use RPM; Debian-based distributions use
dpkg; SuSE uses YAST; and Slackware uses pkgtool.

Linux and Unix are like the Swiss army knife of
networking: they have one or two tools that get used all
the time, others that are used less often, and some that
are never used. Unlike the Swiss army knife, you can slim
down Linux or Unix to just the services you need and dis-
card those you do not. I will never use the awl or scissors
on my knife just as I will never use rsh or the set-UID to
root features of mount or umount.

Decide which ports you wish to have open (such as
www and ftp) and close the rest. Closing unnecessary
ports makes your system more secure and perform better.

sin three: Old Software Versions
Linux and Unix are not perfect. People find new vulner-
abilities every month.2 Do not despair, though. The speed
with which problems are found and fixed in Linux is the
fastest on the planet. Your challenge as an administrator
is to keep up with the changes.

Each distribution has a mailing list through which
security bulletins are issued, and an FTP or Web site where
the fix will be available. There are also excellent indepen-
dent security mailing lists, such as Bugtraq and X-Force’s
Alert. You can (and should) subscribe to these lists.3

Other good sources of Linux security information are
http://www.lwn.net/ and http://www.linuxtoday.com/.
These sites are distribution-neutral and carry all of the
major distributions’ security advisories.

The Seven Deadly Sins of Linux Security

The most careful sysadmins will reboot
their systems several times after making
changes to startup scripts, other con-
figuration files, and the kernel, and after
installing security patches to ensure cor-
rect and reliable startup and operation. TI

P

ACM QUEUE May-June 2007 43 more queue: www.acmqueue.com

One of the advantages of Linux is that when a fix is
issued, it is very quick to install. Furthermore, unless it
is in the kernel, your downtime for that service is on the
order of seconds or minutes. Rarely, if ever, is a reboot
necessary.

sin four: �Insecure and Badly Configured
Programs

The use of insecure programs (such as PHP, FTP, rsh, NFS,
and portmap) in other than carefully controlled situa-
tions and failure to configure other programs properly
continues to be a major security sin.

Most sysadmins know that POP and IMAP (unless
wrapped in SSL), telnet, and FTP4 send passwords and data
in the clear (unencrypted). They know that PHP, NFS,
and portmap have a history of security problems, as well
as design defects in their authentication. Many use them
anyway, and then are surprised when they get broken
into. Instead, use spop, simap, ssh, and ssh’s scp or sftp,
or put a good firewall in front of that subnet, or set up a
restricted VPN between your facilities. If you absolutely
must use PHP, keep it patched and carefully audit your
code for problems.

Many programs are secure only if properly config-
ured. It is common for sysadmins to configure them
improperly, sometimes because of a lack of training and
understanding of the risks; other times use of an inse-
cure feature is deliberate, because “I just gotta have it.” A
recent case in point is Apache’s PHP capability, which has
had a history of security problems. These problems have
been well publicized, and still some people cannot seem
to use it securely or find an alternative. Security and con-
venience are often contradictory, and you have to make a
choice between the two.

Before deciding to deploy a service (or changing
which capabilities will be used or how the service will be
deployed), do some research. Check the security his-
tory and understand how the service may be deployed
securely. If it cannot be deployed securely, what are
secure alternatives? I still encounter people using FTP,
not realizing that sftp is an excellent alternative. Putting
an insecure service such as NFS behind a firewall may be
the solution for some. For others, putting their insecure
Windows networks behind firewalls, with their differ-
ent offices linked via a VPN between these same Linux
firewalls, offers excellent security. Configure a firewall
with separate subnets on separate interfaces for different
categories of users, such as students and faculty or sales,
human resources, and engineering.

Absolutely prohibit wireless networks inside of the

firewall or to any system with confidential information
unless all wireless traffic first is encrypted with IPsec or
equivalent. Do not rely on WEP (Wired Equivalent Pri-
vacy) or its successors.

Web servers and CGI programs are the bane of Linux
and Unix computer security. Simply speaking, a CGI pro-
gram is one of the easiest ways that a hacker can get into
your system. It is essentially a program that runs on your
computer at the request of anyone and everyone without
passwords and has the access to do powerful things (for
example, shipping valuable merchandise, revealing confi-
dential data such as your customers’ credit card numbers,
and moving money between accounts).

A CGI allows anyone to access your Web site, good
intentions or not. While other “accepted” servers such as
sendmail and named also will talk with anyone, the scope
of what a client may request is far smaller. Although these
latter servers have had their share of serious security bugs,
those that keep their security patches up to date have
minimal risk.

Here are a few hard and fast rules that will help make
your Web site secure.

Know your data (supplied by Web clients).
• �Establish maximums and minimums for data-entry

values and lengths of fields.
• �Decide which characters are acceptable in each field.

Expect the malicious to send you control characters
and non-ASCII bytes. Expect that crackers will use
the % encoding or alternate character sets to generate
these evil characters. Thus, you need to check for illegal
characters both before and after % conversion and in
different character sets.

• �Double-check each entered value. A surprising number
of shopping-cart packages put the price of items in the
form and believe the price in the filled-out form sent by
the user. All a user needs to do to give himself or herself
a discount is to alter this form.

• �If possible enumerate the allowed values instead of
using ranges (except for listing ranges of letters and
digits).

• �Understand, too, that an evil Web client can send bytes
back to your server. The hacker may copy and alter your
Web form to change your “fixed” fields, etc.

• �Use a secure language. Client-supplied data never
should be handed directly to a shell script; there are
too many opportunities for a cracker to get a shell or to
exploit a buffer overflow vulnerability. For many that
secure language will be C, C++, Perl, Java, or Python.
If that language offers checking for tainted data, use

44 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

it. One language does not fit all. Perl has a number of
features to enable safer CGI programs.5 These include
the “tainted data” feature, the -w flag to warn you about
things that you are creating but not using, the strict
capability, and perlsec. These features are discussed in
http://perldoc.perl.org/perlsec.html.

• �If you have many CGI programs—with a few being care-
fully written so that they manipulate confidential data,
and some that are more casually written because they
do not handle critical data—consider the following. Use
the suEXEC program that comes with Apache to run
these different classes of CGIs as different Linux or Unix
users. This allows you to use operating system file per-
missions to prevent the less-trusted CGIs from accessing
more confidential data. Documentation on suEXEC is
available at http://apache.org/docs/suexec.html.

Analyze and audit CGIs for vulnerabilities.
When writing CGI programs, look at them the way a
cracker would and try to break them. Stop buffer over-
flows by using good programming techniques. An easy
way to determine if the line is larger than the buffer is to
see that it does not end with a newline character, as this
example illustrates:

 #include <stdio.h>
 #include <string.h>

 int c;
 char buf[200];

 if (!fgets(buf, sizeof buf, stdin))
	 error();
 else if (!strchr(buf, ‘\n’)) {
		 /* Read rest of long line. */
	 while ((c = getchar()) != EOF
	 && c != ‘\n’)
		 ;
	 overflow();
 }

Do not use the gets() routine because it does not do
any checking for buffer overflows; use fgets() instead.
Many of the other popular C string functions have similar
weaknesses. The strcpy() function, for example, “lets”
you copy a large buffer into a small buffer, overwriting

unrelated memory. The strncpy() function is an excellent
alternative. A safe way to copy strings is:

	 strncpy(dest_buf, source_buf,
	 sizeof dest_buf);
	 dest_buf[sizeof dest_buf - 1] = ‘\0’;

To detect a problem, one possibility is:

	 if (strlen(source_buf)
	 >= sizeof dest_buf)
	 error();
	 else
	 strcpy(dest_buf, source_buf);

Check for escape sequences, the possibility of a client
issuing Linux or Unix commands (by inserting spaces,
quotes, or semicolons), binary data, calls to other pro-
grams, etc. Often it is safer to have a list of allowed char-
acters rather than determining each unsafe character.

The following C code may be used to process a field in
which the client should supply his or her name. In this
example, the calling process supplies a NUL-terminated
string; this routine returns 0 if the string is a legal name,
and -1 otherwise. The second argument specifies the
maximum legal string allowed, including the terminating
NUL byte. Note that the calling routine must be careful to
ensure that its buffer did not overflow. I chose clear code
over slightly more efficient code.

#include <string.h>

 char okname[] = “ .’-,abcdefghijklmnopqrstuvwxyz”
	 “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

 /* Return 0 on legal names, -1 otherwise. */
 legal(char *name, int maxlen)
 {
	 if (!name || !*name
	 || strlen(name) >= maxlen)
		 return -1;
	 while (*name)
		 if (!strchr(okname, *name++))
			 return -1;
	 return 0;
 }

The Seven Deadly Sins of Linux Security

ACM QUEUE May-June 2007 45 more queue: www.acmqueue.com

Many system break-ins relating to Linux and Unix
Web servers happen via insecure CGIs.

Implement rings of security in CGIs.
Try to design your application so that even if it finds a
CGI vulnerability, the system is protected from major
damage. One solution is to have CGIs just be front
ends for a solidly written server running on a different
machine. The more hurdles a hacker must jump to reach
the goal, the more likely it is that he or she will stumble.

Watch for bug reports in third-party CGIs and inspect
their code.
If you use third party-supplied CGI scripts (such as
shopping carts), you should subscribe to the appropriate
mailing lists and watch for security bulletins. If possible,
get the source code and review it. If you do not know the
language, then get someone who does to review it.

Many CGIs, both commercial and open source, have
severe security holes that are well known to the hacker
community. Many locally written CGIs have security
vulnerabilities because the programmers who write them
typically have no training in writing secure code and such
code is rarely audited.

Avoid creating and using set-UID and set-GID programs
to the maximum extent possible, especially programs set-
UID to root (and try real hard).
Many system programs run as root. Frequently all these
programs need to be set-UID to run as some user to gain
access to data that should not be world accessible. Other
programs need to be set-UID to root only when starting
to open a low network port for listening or to change its
privileges to that of a particular user. In this case, the pro-
gram then should give up root privileges. Apache, named,
and ftpd were enhanced several years ago to do this for
better security. Different programs may need to be set-
UID to different users to protect them from each other.

Do not keep clients’ confidential data on the Web server.
Avoid storing users’ privileged data (credit card numbers,
financial details, mailing addresses and phone numbers,
etc.) on the same machine as the Web server. This separa-
tion will force a hacker to crack two systems instead of
just one to get this data.

Do not include users’ confidential data (credit card
numbers, financial details, mailing addresses and phone
numbers, session ID, etc.) in an URL or cookie.6

Frequently this is done (insecurely) as arguments to a CGI

program. Consider the following example:

 www.abroker.com/cgi-bin/address_change?account=666
 ?passwd=secret&addr=1+Maple+St.&phone=301-688-6524

Some browsers may store this URL (containing confi-
dential data) in a history file. If someone is browsing from
a public terminal, such as a school or library, you could
be liable for careless handling of the data. Similar issues
are present for cookies.

Be very sure that the privileged data that a user supplies
on a form does not show up as the default data for the
next person to “pull down” that form and see.
Yes, this has actually happened.

Always protect the user who types in a password.
Take the user to a secured area prior to this information
being entered and ensure that the password or credit card
number will be encrypted on the system (with https)
before transmission to your server.

sin five: �Insufficient Resources and
Misplaced Priorities

At many organizations, management simply will not
approve sufficient resources to allow sysadmins to provide
good security. It takes many things to achieve a truly
comprehensive security solution. Education, design,
proper implementation, user training, maintenance, and
continual vigilance all are required for an organization
to be secure. Frequently, security is limited to what a sys-
admin is willing to do on his or her own time. Yet, a sys-
admin who is unwilling to spend the time will certainly
be blamed for any violations. This deadly sin concerns
problems that are not the sysadmin’s direct responsibility.
In other words, management will not allow the sysadmin
to make the changes necessary for good security.

This may not be a “technical” problem, but it has been
the cause of break-ins at numerous organizations. Lack
of resources commonly is a result of misplaced priorities.
For example, the following is a common misconception
of those whose organizations have not been broken into:
“The media exaggerates every danger well beyond the
true risk.” Show your manager media accounts of large
companies that have suffered security breaches. If you
shopped at T.J. Maxx or Marshalls in 2006, you probably
received a new credit card number thanks to TJX Cos.,
the parent company, which suffered a security breach
in December. Circuit City suffered a similar breach.
Consider making a present of Bruce Schneier’s excellent

46 May-June 2007 ACM QUEUE rants: feedback@acmqueue.com

book, Secrets and Lies: Digital Security in a Networked World
(Wiley, 2004), to your boss. Secrets and Lies is aimed at
management and limits the tech-speak.

On a number of occasions, I have warned clients about
major security problems only to have them decide that
security was not as important as getting that next release
out or making nonsecurity-related computer improve-
ments. Later, they learned the sad reality—recovering
from a security breach commonly costs 10 times as much
as having implemented good security before the break-
in—and only then did they spend the money to imple-
ment the security.

Furthermore, the estimate of the cost of recovering
from a security breach being 10 times the cost of preven-
tion is only the direct cost. It does not account for the
lost market opportunities for delayed products, the loss
of customers who heard about the security breach and
went elsewhere, and the costs to customers and employ-
ees who could not access your Web site and e-mail during
recovery. It does not account for lost investors and other
consequences of bad publicity, and it most certainly does
not account for the damage done to an IT professional’s
career.

What can be done to resolve insufficient resources and
misplaced priorities? Spend an hour or two a week work-
ing on security as a skunk-works project.7 Demonstrate a
Linux firewall, Web server, or VPN. Show how easy it is to
update Linux software when patches come in, to use ssh
and gpg, to crack most passwords, or attack a Wi-Fi wire-
less network. Do scans of your network from your home
system (using nmap with the -O flag) to show how open
your network is. Install Snort and PortSentry outside of
your firewall (if any) to show how often your network is
attacked.

Make a point of talking with your colleagues to get
detailed accounts of problems that you can then relay
to your management. Have a good consultant or other
trusted outside source do a security audit of your com-
pany and recommend improvements. Giving up leads to
procrastination, and procrastination results in compro-
mised systems. That is the dark side of The Force. Never
give up. Never surrender.8

Misplaced priorities can also mean using Microsoft
because “We are a Microsoft shop,” disregarding that it
may not have sufficient security for servers accessible
from the Internet.

Sin Six: Stale and Unnecessary Accounts
As discussed before, each account is a possible entry point
into the system. A stale account’s password will not be
changed, thereby leaving a hole. If the account has data
that needs to be reassigned, disable the account by put-
ting a * or !! in the ex-user’s password field (after the first
colon) in the /etc/passwd file. This disables logging in via
that account because no password encrypts into either of
these values and shadow password-enabled code under-
stands these sequences. Get things cleaned up as soon as
possible. Make sure that no set-UID or set-GID programs
or publicly readable or writable files containing confiden-
tial data remain in that account.

Issuing the following code

chmod 0 /home/someone
find / -user someone -ls

is a good start. Note that the user may have a mailbox,
files in the print spool directory, accounts in various
applications, etc. that will need to be attended to.

Some of the services you removed (while correcting an
earlier sin) have accounts in the /etc/passwd file. When
you remove that service, make sure that the /etc/passwd
account also is removed or disabled. Some of the notables
are FTP, NFS, uucp, mail, gopher, and news. If you do not
need them, get rid of them.

Sin Seven: Procrastination
In many reports of intrusions the sysadmins say, “I meant
to install... IP Tables... TCP Wrappers... a newer version
of... a firewall... turn off NFS and portmap... stop using
PHP...” Clearly they knew, at least vaguely, what had to be
done but delayed until it was too late.

Sure, you have more responsibilities than time, but
consider setting aside an hour twice a week to upgrade
security. Those hours may come with bag lunches at

The Seven Deadly Sins of Linux Security

When a user will no longer be using the
system, be sure to remove his or her
account from the system quickly. TI

P

ACM QUEUE May-June 2007 47 more queue: www.acmqueue.com

your desk, but that beats a cot in your office so that you
can work around the clock for a week recovering from a
compromise. Sadly, I know of one company where they
did bring in those cots for a number of engineers during
a weeks-long recovery project following a breach. Worse,
they procrastinated on deciding to build a firewall until
after this event. Q

ACKNOWLEDGMENTS
This article is based on RealWorld Linux Security: Intrusion,
Detection, Prevention, and Recovery, second edition, by Bob
Toxen (Prentice Hall PTR, 2003, ISBN 0130464562); chap-
ter 2, section 2, “The Seven Most Deadly Sins.”

Thanks to Prentice Hall PTR for granting permission to
use material from the book in this article. Thanks to Larry
Gee, a very talented programmer, for co-authoring this
section of the book.

References
1. �NFS consists of these daemons and a few more, includ-

ing: rpc.nfsd, rpc.mountd, portmap, rpc.lockd, rpc.
statd, rpc.rquotad, and automounter, scattered among
a number of startup scripts. A cracker process can lie
to portmap and masquerade as a legitimate server.
NFS has had plenty of security bugs in the past, and

its design prevents it from being made secure in many
configurations.

2. �Most recent vulnerabilities are not directly exploitable
remotely on most systems. This means that most sys-
tems are not at risk for remote attack from the Internet.
Many of the vulnerabilities may be taken advantage of
by someone with a regular shell account on the system.
Others are in programs that most people do not use
and that are not set-UID or set-GID and thus are not a
threat.
� This is different from most Windows vulnerabilities
where almost every client system or server using that
major version of Windows is vulnerable to remote
attack over the Internet and thus to complete control
by crackers. We observe that most Windows vulner-
abilities affect all Windows versions released in the
past four years, including Vista. We have recently seen
Vista included with past versions of Windows for sev-
eral remote “root” vulnerabilities.

3. �Subscribe to Bugtraq by sending e-mail to
bugtraq-digest-subscribe@securityfocus.com with
empty subject and content. Subscribe to X-Force’s Alert
by logging on to https://atla-mm1.iss.net/mailman/list-
info/alert.

4. �If you are doing only anonymous FTP, your password is
normally your e-mail address. Unless you are a govern-
ment researcher at Groom Lake (Area 51) and you do
not want to acknowledge the existence of such a facil-
ity, then generally you have nothing to worry about.

5. �Most of the information on Perl presented here is from
Kurt Seifried’s writings.

6. �Fidelity Investments, which manages $900 billion of its
customers’ money, did not follow this advice. In May
2002, it was reported that by changing the digits in the
URL of the page displaying his statement—a three-digit
number—a client saw other clients’ statements.

7. �A skunk-works project is one done in secret without
management approval or knowledge.

8. Thanks, Galaxy Quest.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

BOB TOXEN is a computer and network security consultant
with 33 years of Unix experience and 12 years of Linux expe-
rience. He was one of the 162 developers of Berkeley Unix
and one of the four creators of Silicon Graphics’ Unix. He has
been an advisor to the George. W. Bush administration on
computer issues at the five principal intelligence agencies.
© 2007 ACM 1542-7730/07/0500 $5.00

The Linux 2.6 kernel prior to 2.6.17.4
has a nasty local root vulnerability where
anyone with a shell account, possibly
via ssh or abusing a Web server CGI pro-
gram, can make himself or herself root.
See CVE-2006-2451.

Are any of your systems vulnerable to
this right now? I thought so.

A partial fix is to issue the command:

 chmod 700 /etc/cron*/.

A better solution is to write a kernel-
loadable module to prevent use of the
prctl() system call by other than root.

Of course, the only full solution is to
upgrade your kernel. If the system is at a
remote office or colocation facility where
there are no experienced sysadmins,
then good luck if the new kernel does
not boot.

TI
P

48 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

Toward a
	 Commodity
Enterprise
	 Middleware

JOHN O’HARA, JPMORGAN

AMQP (Advanced Message Queuing Protocol) was born
out of my own experience and frustrations in developing
front- and back-office processing systems at investment
banks. It seemed to me that we were living in integra-
tion Groundhog Day—the same problems of connecting
systems together would crop up with depressing regular-
ity. Each time the same discussions about which products
to use would happen, and each time the architecture of
some system would be curtailed to allow for the fact that
the chosen middleware was reassuringly expensive.

From 1996 through to 2003 I was waiting for the solu-
tion to this obvious requirement to materialize as a stan-
dard, and thereby become a commodity. But that failed to
happen, and I grew tired of waiting.

Consequently, AMQP was created and had its first mis-
sion-critical deployment to production in mid-2006. That
project paid for itself with its first deployment, serves
2,000 users, and processes 300 million messages per day.

This article sets out the motivations, capabilities, and
credentials of AMQP and offers it as a practical solution
for a standards-based messaging infrastructure.

AMQP is a binary wire protocol and well-defined set of
behaviors for transmitting application messages between
systems using a combination of store-and-forward, pub-
lish-and-subscribe, and other techniques.1 I use the term
application messages to distinguish AMQP from instant
messaging or other forms of end-user messaging. AMQP

addresses the scenario where there is likely to be some
economic impact if a message is lost, does not arrive in a
timely manner, or is improperly processed.

The protocol is designed to be usable from different
programming environments, operating systems, and
hardware devices, as well as making high-performance
implementations possible on various network transports
including TCP, SCTP (Stream Control Transmission Proto-
col), and InfiniBand.

The Need for a Standard
Every major investment bank on Wall Street has at some
point built its own messaging middleware. Many have
either faded away or spun off to become commercial
proprietary solutions.

Why do they build their own middleware? The finan-
cial services industry has some of the most demanding
needs for messaging both in guaranteed delivery and in
publish-subscribe. Demands often exceed the capabilities
of currently available software, and there is no shortage
of technology expertise in banks. Building one’s own
middleware is therefore a credible approach.

Banks are looking for high-performance service buses
from which to hang their system architectures. Web ser-
vices are not fitting the bill because they are too compute-
and bandwidth-intensive per unit of work.

The growth of automated trading is also igniting inter-

ACM QUEUE May/June 2007 49 more queue: www.acmqueue.com

Can AMQP enable a new era in messaging middleware?

50 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

est in improving middleware. Banks are still pushing the
envelope with market data events exceeding 500,000 per
second at source, according to the Options Price Report-
ing Authority. Processing that flood of information and
executing timely business transactions off the back of it is
challenging. Market data volumes exacerbate transaction-
processing volumes.

Given the clear need, why do many internal efforts
not endure? Despite their technical abilities, banks are
not software houses; messaging middleware is complex
software, and it is difficult for a bank to focus the level of
intellect and talent on the problem for a long time.

Banks have managed to work together in creating
open technical standards where such standards are
absolutely necessary to doing business; the FIX (Financial
Information Exchange) protocol, FAST (FIX Adapted for
Streaming), FpML (Financial products Markup Language),
and SWIFT (Society for Worldwide Interbank Financial
Telecommunication) are all good examples.

In 2003 I embarked on a quest to standardize MOM
(message-oriented middleware) technology outside my
firm, so we could pick it up inside the firm and use it
between firms.

Making it Happen
This had to be an industry initiative. Home-grown
middleware could not thrive in the small market available
within a host organization, even the largest host.

It is also notable that pervasive networking standards
such as Ethernet, the Internet Protocol, e-mail, and the
Web share some traits. They are all royalty-free and unen-
cumbered by patents, they are all publicly specified, and
they all shipped with a useful early implementation for
free. The combination of freedom and usefulness drives
their adoption when predicated on fitness for purpose.

To succeed, AMQP needed to adopt these same charac-
teristics:
• It needed to be a fully defined, open, royalty-free,
unpatented specification to enable anyone to implement
a compatible service. Furthermore, the standard specifica-
tion had to be clearly separate from the implementations;

otherwise, it would not be a fair market for commercial
entities to enter. AMQP had to be appealing for com-
mercial implementation and exploitation or it would not
succeed.
• AMQP needed to have real implementations of the
specification; otherwise, the specification would not be
immediately useful or interesting to front-line developers
with pressing needs. Ideally, it should have more than
one implementation to qualify as a potential IETF draft
standard.2 So, there are real implementations you can run
today (as detailed later in the article).
• AMQP software had to be proven in live systems.
Middleware is a critical piece of any system and must
be trusted. That trust has to be earned. To this extent, it
was clear we would have to deploy an implementation
in a high-profile, mission-critical application to assuage
the fears of other early adopters. So, a combination of
OpenAMQ and Qpid are live at JPMorgan, supporting
2,000 users on five continents and processing 300 million
messages per day.
• Finally, and most importantly, AMQP needed to be a
collective effort. Openness to partnership and the ideas
of others had to be there from the beginning. To this end,
we carefully selected a partner to co-develop the specifi-
cation and implement the software. We chose iMatix, a
boutique European development house that had clearly
demonstrated a commitment to open source and sound
ethics, and had a strong engineering background and
excellent writing abilities.

Because the project was sponsored by a bank, it also
had to “wash its own face,” as they say. This was not a
research project. Through sheer good luck, there was
a need to refresh some large systems with very specific
requirements. This provided a tangible return for AMQP
investment, so I was able to convince a forward-looking
CIO that AMQP was the way to go.

The AMQP Working Group
When the shape of AMQP had been worked out between
JPMorgan and iMatix, and the basics of the specification
forged in the heat of an initial implementation, the time
was right to extend the partnership and encourage others
to bring their talents to the specification and share own-
ership of AMQP’s future.

Strong Governance
The heart of openness and trust in any group effort is
effective governance. Expanding the group required a
new contractual framework and a plan for the end game
where AMQP could become a standard. Red Hat took the

Toward a
	 Commodity
Enterprise
	 Middleware

ACM QUEUE May/June 2007 51 more queue: www.acmqueue.com

lead in establishing the legal framework for the standard;
it, too, understood the issues in managing open intel-
lectual property. The key part of doing this is to ensure
that everyone contributing has the authority to do so and
that there is a paper trail from every potential owner of IP
through to the group effort, and that the intent to share
is clear even in draft revisions of specifications. The result
was a contract that clearly committed the members of the
working group to promote unrestricted open middleware
through AMQP.

The members of the working group have granted
licenses to the necessary parts of their patent portfolios to
anyone who wants to implement AMQP. You can see the
license grant in the specification itself.

This level of contribution shows the commitment
of the group to open middleware. The AMQP Working
Group’s Web site is http://www.amqp.org.

User Driven
The AMQP Working Group is quite unique in technol-
ogy standards work because of the heavy involvement
of users. JPMorgan, Credit Suisse, TWIST, and to some
degree Cisco are more end users than developers. This
balance leads to a group of people interested in solving
the problem, not pandering to technology agendas or
product agendas.

Architecture
From the beginning,
AMQP’s design objective
was to define enough
MOM semantics (see figure
1) to meet the needs of
most commercial comput-
ing systems and to do so
in an efficient manner that
could ultimately be embed-
ded into the network
infrastructure. It’s not just
for banks.

AMQP encompasses the
domains of store-and-for-
ward messaging, publish-
and-subscribe messaging,
and file transfer. It incor-
porates common patterns
to ease the traversal of fire-
walls while retaining secu-
rity, and to permit network
QoS. To ease adoption and

migration, AMQP is also designed to encompass JMS (Java
Message Service) semantics. JMS is a hugely popular API
for Java programmers and cannot be ignored. AMQP goes
further, however, and includes additional semantics not
found in JMS that members of the working group have
found useful in delivering large, robust systems over the
decades. Interestingly, AMQP does not itself specify the
API a developer uses, though it is likely that will happen
in the future.

An example feature not found in JMS is AMQP’s Man-
datory Delivery Mode, in which a client can use AMQP
to request services from a pool of servers connected to
AMQP broker queues. The AMQP broker can load-bal-
ance requests among the services subscribed to a request
queue, and the number of processes providing a service
can dynamically grow and shrink with no impact on the
client(s). If the service pool shrinks to zero, however, the
client can be informed by AMQP using the Mandatory
Delivery Mode since that may be an operational error for
the application.

AMQP also specifies a small wire-level type system for
message properties, enabling them to be read efficiently
by many programming languages, as well as by the MOM
servers themselves for filtering and routing purposes.
Thus, not only can a Python client read headers set in
Java servers, but different vendors can relay messages
between their implementations seamlessly. The type
system, however, suffers the usual problem in that object

AMQP Protocol Stack

ethernet

framing

TCP,
SCTP,

or UDP
AMQP wire format

network-
friendly

infrastructure
data is binary

network-
optimized

independent
of JMS

multi-vendor
interoperability

“exchanges”
define flexible

routing rules

flexible routing/
queuing

parameters

file transfer,
messaging

(including JMS),
transactions, etc.

AMQP model

transport

infiniband

FIG 1

52 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

types cannot be transported in the headers; what would a
Cobol program do with a Smalltalk object?

Finally, AMQP draws heavily on the heritage of IETF
open standards. It tries not to reinvent existing concepts.
Early versions of the AMQP wire protocol were influenced
by SMTP,3 MIME,4 HTTP-NG,5 NFSv4,6 SCTP,7 BEEP,8 and
the writings of Marshal Rose,9 an IETF veteran.

Main Features
AMQP is split into two main areas: transport model and
queuing model. AMQP is unusual in that it thoroughly
specifies the semantics of the services it provides within
the queuing model; since applications have a very inti-
mate relationship with their middleware, this needs to
be well defined or interoperability cannot be achieved.
In this respect, AMQP semantics are more tightly defined
than JMS semantics.

As stated, AMQP’s transport is a binary protocol using
network byte ordering. We wanted to make it easy to
embed AMQP inside the ASICs (application-specific inte-
grated circuits) of network elements, by design. With free
tools such as Wireshark, it is not necessary to use XML
for technical infrastructure layers that only specialists will
see. XML has been used in the likes of BEEP and XMPP: in
the case of BEEP it complicates the protocol; in the case of
XMPP it is limited to being carried on a stream-oriented
transport. AMQP aims to be high performance and flex-
ible, to be hardware friendly rather than human friendly.
The protocol specification itself, however, is written in
XML so implementers can code-generate large portions of
their implementations; this makes it easier for vendors to
support the technology.

The transport model itself can reuse different underly-
ing transports. The first is TCP/IP, but by adopting SCTP,
we can obtain better parallelism for messages (SCTP
removes the byte-stream head-of-line blocking problem
imposed by TCP). There are also planned mappings to
UDP to support AMQP over multicast, and bindings to
InfiniBand are planned. InfiniBand’s performance is gen-
erating a lot of interest at banks, and AMQP would make
it very accessible to developers.

TCP/IP, however, is expected to be the default choice
for most end users for best interoperability. With these
options emerging, it is important for AMQP to establish
a useful functional default set of capabilities that all
implementations must adhere to or suffer the lowest-
common-denominator problem that plagued protocols
such as early versions of NFS (many servers did not imple-
ment file locking). Hopefully, a compliance testing kit will
address this issue.

Messages
Messages in AMQP are self-contained and long-lived, and
their content is immutable and opaque. The content of
messages is essentially unlimited in size; 4GB messages
are supported just as easily as 4KB messages. Messages
have headers that AMQP can read and use to help in
routing.

You can liken this to a postal service: a message is the
envelope, the headers are information written on the
envelope and visible to the mail carrier, who may add
various postmarks to the envelope to help deliver the
message. The valuable content is within the envelope,
hidden from and not modified by the carrier. The anal-
ogy holds quite well, except that it is possible for AMQP
to make unlimited copies of the messages to deliver if
required.

Queues
Queues are the core concept in AMQP. Every message
always ends up in a queue, even if it is an in-memory pri-
vate queue feeding a client directly. To extend the postal
analogy, queues are mailboxes at the final destination or
intermediate holding areas in the sorting office.

Queues can store messages in memory or on disk.
They can search and reorder messages, and they may par-
ticipate in transactions. The administrator can configure
the service levels they expect from the queues with regard
to latency, durability, availability, etc. These are all aspects
of implementation and not defined by AMQP. This is
one way commercial implementations can differenti-
ate themselves while remaining AMQP-compliant and
interoperable.

Exchanges
Exchanges are the delivery service for messages. In the
postal analogy, exchanges provide sorting and delivery
services. In the AMQP model, selecting a different carrier
is how different ways of delivering the message are selected.
The exchange used by a publish operation determines if
the delivery will be direct or publish-and-subscribe, for

Toward a
	 Commodity
Enterprise
	 Middleware

ACM QUEUE May/June 2007 53 more queue: www.acmqueue.com

example. The exchange concept is how AMQP brings
together and abstracts different middleware delivery mod-
els. It is also the main extension point in the protocol.

A client chooses the exchange used to deliver each
message as it is published. The exchange looks at the
information in the headers of a message and selects where
they should be transferred to. This is how AMQP brings
the various messaging idioms together—clients can select
which exchange should route their messages.

Several exchanges must be supported by a compliant
AMQP implementation:
• The direct exchange will queue a message directly at
a single queue, choosing the queue on the basis of the
“routing key” header in the message and matching it by
name. This is how a letter carrier delivers a message to a
postal address.
• The topic exchange will copy and queue the message to
all clients that have expressed an interest based on a rapid
pattern match with the routing key header. You can think
of the routing key as an address, but it is a more abstract
concept useful to several types of routing.
• The headers exchange will examine all the headers in
a message, evaluating them against query predicates pro-
vided by interested clients using those predicates to select
the final queues, copying the message as necessary.

Throughout this process, exchanges never store mes-
sages, but they do retain binding parameters supplied to
them by the clients using them. These bindings are the
arguments to the exchange routing functions that enable
the selection of one or more queues.

Bindings
The arguments supplied to exchanges to enable the
routing of messages are known as bindings (see figure 2).
Bindings vary depending on the nature of the exchange;
the direct exchange requires less binding information
than the headers exchange. Notably, it is not always clear

which entity should provide the binding information for
a particular messaging interaction. In the direct exchange,
the sender is providing the association between a routing
key and the desired destination queue. This is the origin
of the “destination” addressing idiom so common to JMS
and other queuing products.

In the topic exchange, it is the receiving client that
provides the binding information, specifying that when
the topic exchange sees a message that matches any given
client(s’) binding(s), the message should be delivered to
all of them.

AMQP has no concept of a “destination,” since it
does not make sense for consumer-driven messaging. It
would limit its abstract routing capabilities. The concept
of bindings and the convention of using a routing key as
the default addressing information overcome the artificial
divisions that have existed in many messaging products.

Implementations
A standard is nothing without implementations. AMQP
has several available now. The first implementation is
iMatix OpenAMQ (http://www.openamq.org), which is
a C implementation of the server in production use at
JPMorgan.

Apache’s Qpid project has entered incubation (http://
incubator.apache.org/projects/qpid.html). It will be
Apache’s multilanguage implementation of AMQP, with
servers available in C++ and Java, and clients available in
C, C++, Java JMS, Python, and Ruby on Rails, with more
to follow. Qpid has a very active development commu-
nity and is making rapid progress toward its M2 release.
Also, Qpid is being used as the basis for several commer-
cial offerings, notably from IONA and Red Hat.

Most recently, and intriguingly, Rabbit Technologies
has developed an implementation on the Erlang/OTP
(Open Telecom Platform), building on that language’s
strong support for parallelism and networking.

Of course, you should
be able to mix and match
client and server compo-
nents from any vendor
product—Qpid’s Java client
talking to RabbitMQ’s
Erlang server, for example.

The best way to learn
more about AMQP is to
visit http://www.amqp.org,
where you can download
the specification, try one of
the free implementations,

AMQP Semantic Model

file transfer

messaging exchanges

transactions ctl

queue

queue

queue

bindingsFIG 2

54 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

or even build your own. Both the protocol working group
and the implementation groups are open to review and
feedback; we want this protocol to be useful, successful,
and inclusive.

A Transport for Other Standards
In addition to being used to support organizations’
internal messaging needs, AMQP is useful as a standard
transport for other standards; after all, open standards
should be built using other open standards.

Many business messaging standards describe business
transactions, but there are only a relatively small number
of transport options. HTTP is often used simply because
it is perceived to be generally available, and firewalls are
often configured to let HTTP traffic pass. HTTP offers only
basic push messaging semantics, however; it does not
enable any kind of call-back or event notification, and
it requires the applications that use it to build their own
message store, reliability, and access control facilities on
top of it. EDI AS2 and WS-RM are examples of standards
layered on HTTP; but these describe only message trans-
port, not the semantics of how a message is delivered to
an application. This leaves the developer with a partial
solution and more problems to solve.

By offering AMQP as a standard for business messag-
ing, we can make the full richness of messaging middle-
ware available to other standards. Using AMQP servers,
we can remove the burden of providing availability and
reliability from end-user applications, making them sim-
pler, cheaper, and more functional. The only requirement
is that an AMQP server is run and that TCP/IP port 5672
be opened in the firewall. Given that any commercial
activity involves lawyers and contracts, opening a port is
a small price to pay to gain rich messaging functionality.

The TWIST standards organization, which promotes
standards around financial supply chain management,
is a member of the AMQP working group and promotes
AMQP as its preferred standard for transporting business
messages.

The FIX community is also looking at AMQP as a
possible transport layer for FIX 5. FIX is a popular trad-

ing protocol that has recently been extended to support
efficient delivery of market data; the current session layer,
however, cannot provide publish-subscribe or scalable
guaranteed delivery. AMQP offers FIX users the chance to
get the features they need, while remaining open.

SOA with AMQP
SOA (service-oriented architecture) is a technique for
building large systems out of highly cohesive services
loosely coupled to provide business processes. SOA is not
a new concept. It was well known in the mid-’90s and
earlier, but in its latest incarnation it is being pitched as
Web service-oriented architecture. The architectural pat-
tern needs neither HTTP nor XML.

One of the most fundamental parts of SOA is the com-
munications mechanism that links the services. The term
EMB (enterprise message bus) is closely linked to SOA.

Traditional deployments of EMBs have used pro-
prietary technology, but enterprises would rather have
standards-based solutions that are open, as well as the
ability to choose between and switch suppliers, and the
improvements that competition brings. AMQP, therefore,
represents an ideal choice for an EMB. It allows a clean
migration away from proprietary protocols and provides
an avenue into other standards, including Web services.

Web services has four basic parts: service description,
XML message content, service discovery, and transport.
The transport is commonly presumed to be HTTP, but
it does not have to be. Enterprises often use XML over
messaging middleware as the transport for all the benefits
that brings. Having done this, enterprises find they have
created the problem they wanted to avoid: running an
open architecture over a proprietary transport. Combin-
ing Web services with AMQP as a transport gives the rich-
ness an enterprise needs with the openness it craves in its
core architecture.

Use of AMQP in SOA is just beginning, and you don’t
need anything other than AMQP to do it. I am already
involved in a project to migrate an existing mission-criti-
cal EMB from a proprietary middleware to AMQP, so we
can cost-effectively scale the bus to many more systems.

Connecting to Legacy Middleware
AMQP is a complete middleware protocol. It is not a low-
est-common-denominator solution, and the only political
design constraint is its explicit support for JMS semantics.
Obviously, software that implements the AMQP specifica-
tion will be able to interoperate, even where that software
is from different suppliers. That means that the JMS client
from product A would be able to talk to the C++ server

Toward a
	 Commodity
Enterprise
	 Middleware

ACM QUEUE May/June 2007 55 more queue: www.acmqueue.com

from product B and send messages to a Ruby client in
product C. Of course, in the real world there will be some
teething difficulties, and the AMQP working group is
starting to focus on how to create and manage a protocol
compliance test suite to mitigate that risk.

There are many middleware products, however, each
with its internal architecture. The AMQP Working Group
encourages middleware vendors to implement AMQP
in their products, but it will be nontrivial to get a good
semantic match, and some vendors may be reluctant to
support interoperability for commercial reasons.

In the meantime, there will be a need for bridging
from the installed base of proprietary products. The
easiest way to do this may be to use one of the many
commercial or open source EAI (enterprise application
integration) packages, but we expect several AMQP
products to include native bridges to the most common
proprietary middleware soon.

Adopting AMQP
The most natural way for an organization to adopt AMQP
is to deploy it opportunistically or as part of a strategy to
move to standards-based EMB. This approach can enable
an organization to benefit from competitively priced or
open source solutions and gain experience with the pro-
tocol and products that support it. This is the approach
we took: using AMQP in isolated systems and then
branching into core EMB systems.

Over the course of a few years, much of your mes-
saging may become AMQP-enabled by following this
approach. Your current middleware supplier may adopt
AMQP and enable your move to a standards-based model
in that way. It is likely that AMQP will eventually be
provided as a core service by your network infrastructure,
in hardware.

On the other hand, if your company is embarking on
SOA (or other bus-based architecture), we suggest that
you seriously consider an en-masse deployment of AMQP
as the backbone of SOA. Doing so may position you to
benefit from competition among suppliers of AMQP-
compatible middleware so you may achieve the levels of
support and qualities of service you need from a suitable
supplier. Deploying AMQP may also mitigate the worri-
some issue of vendor lock-in or supplier failure for the
critical bus component of an SOA, which is a long-term
investment for your company. This same thinking applies
where open protocols for e-business are being deployed
between trading partners over the Internet or leased lines.
Of course, whatever strategy you choose is yours alone
and must be determined by your circumstances.

Conclusion
After two decades of proprietary messaging middleware,
a credible standards-based alternative exists at last. The
AMQP Working Group is rapidly evolving the protocol
and hopes to reach version 1.0 during 2008, but imple-
mentations are available today that are both useful and
proven in real-world deployments.

AMQP lets more applications be enterprise-grade
without the costs associated with that label. It provides
a capable messaging backbone that can be a springboard
for new innovations and new kinds of applications. Q

References
1. �O’Hara, R.J., Hintjens, P., Greig, R., Sim, G., et al.

2006. AMQP Advanced Message Queuing Protocol
Version 0.8; http://www.amqp.org/tikiwiki/tiki-index.
php?page=Download.

2. Bradner, S. 1996. IETF Standards Process, RFC 2026.
3. �Postel, J., Klensin, J. 1982/2001. Simple Message Trans-

fer Protocol, RFC 821 / 2821.
4. �Freed, N., Borenstein, N. 1996. Multipurpose Internet

Mail Extensions (MIME), RFC 2045.
5. �Janssen, B. 1998. Binary Wire Protocol for HTTP-ng;

http://www.w3.org/Protocols/HTTP-NG/.
6. �Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,

Beame, C., Eisler, M., Noveck, D. 2003. Network File
System (NFS) version 4 Protocol, RFC 3530.

7. �Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwar-
zbauer. H., Taylor, T., Rytina, I., Kalla, M., Zhang, L.,
Paxson, V. 2000. Stream Control Transmission Protocol,
RFC 2960.

8. �Rose, M. 2001. The Blocks Extensible Exchange Proto-
col Core, RFC 3080.

9. �Rose, M. 2002. “Introduction: Application Protocol
Design.” BEEP: The Definitive Guide. O’Reilly.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

R. JOHN O’HARA is a senior architect and distinguished
engineer at JPMorgan. He drove the creation of AMQP
and was an early contributor to the FpML financial markets
messaging standard. He is chairman of the AMQP Work-
ing Group. His interests include data center virtualization,
creative uses of open source for commercial data processing,
event and data replication middleware, and making software
architecture “simple and intuitive.” O’Hara holds an honors
degree in electronic engineering and computer science from
Aston University, England.
© 2007 ACM 1542-7730/07/0500 $5.00

56 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

book reviews
Designing with Web Standards (second edition)
Jeffrey Zeldman, Peachpit Press, 2006, $44.99,
ISBN: 0321385551.

Jeffrey Zeldman has written an excel-
lent update of his critically acclaimed
book. This second edition covers
the changes to Web browsers, Web
development techniques, and the Web
community’s acceptance of Web stan-
dards in the four years since the first
edition. One of the most significant

changes has been improved support for CSS (cascading
style sheets) layout among all browsers.

Part 1 of the book addresses the importance of Web
standards. Anyone who is already convinced of the value
of using Web standards, and who doesn’t need the infor-
mation to convince others, can skip part 1 and go directly
to part 2, the how-to of designing with Web standards.

Part 2 begins with a discussion about modern markup.
XHTML is a reformulation of HTML using XML. The next
chapter covers simple rules for converting from HTML
to XHTML. The following chapter begins by walking the
reader through an example of building a Web page using
a hybrid layout. The example demonstrates how to use
CSS to incorporate accessibility into the page, and by
extension into the Web site as a whole.

Development of the example Web page is interrupted
to cover CSS basics, after which Zeldman picks up with
the example, using CSS to display the Web page without
having to make changes to the page code.

A discussion of typography follows; it controls how
text looks on the screen. Zeldman debunks many of the
myths surrounding Web accessibility and provides tips
for making Web sites more accessible. The final chapter
brings together concepts learned earlier in the book and
adds a few new techniques to create a CSS design. In the
first edition of the book, many of the techniques were
cutting edge. In the years between editions, many of
these techniques have become part of Web development
best practices.

I highly recommend this book for all Web profession-
als. Those just beginning their careers can learn the right
way to build standards-compliant Web sites. Those who
have been in the field for decades can learn current best
practices that will make their jobs easier, while still meet-
ing the requirements of their clients. 	 —Will Wallace

Expert VB 2005 Business Objects (second edition)
Rockford Lhotka, Apress, 2006, $59.99,
ISBN: 1590596315.

If you are looking for a good .NET
companion framework, you should
seriously consider CSLA (component-
based scalable logical architecture).
Rockford Lhotka designed it to ease
the development of business objects
that must be reused and deployed in
a variety of distributed scenarios—for

example, two-tier architectures with desktop interfaces or
three-tier architectures with Web interfaces. The result is
a framework that provides built-in support for multilevel
undo/redo, business rules, two-way data binding for both
Windows and Web forms, object persistence, custom
authentication, and integrated authorization.

This book reports on the CSLA framework. Its 12 chap-
ters are well organized and easy to follow for the average
.NET programmer; a few sections delve into some .NET
intricacies that are necessary for implementing two-way
data binding, for example, but Lhotka has managed to
take the reader from the essential concepts to the intrica-
cies so that they are easy to understand. Furthermore,
readers who are not interested in the details may skip
these sections safely.

The first chapter is an essay on distributed architec-
tures in which the emphasis is on the distinction between
logical and physical models and the mappings between
them; this chapter explains the motivation for a frame-
work such as CSLA, whose design goals and main features
are presented in chapter 2. Chapters 3 through 5 deal
with the implementation of the framework itself. The rest
of the book reports on using the framework to implement
a small, but not trivial, project management system to
which the user can have access through a typical desktop
application, Web page, or SOAP.

I must confess that I enjoyed evaluating this book, and
I definitely recommend it to programmers who develop
typical business applications and wish to take the .NET
framework a step further. I also think that it is a valu-
able resource for information technology students since
Lhotka’s style of writing is didactic and the design of
the framework is quite clean. For readers who prefer C#,
another version is available. 	 —Rafael Corchuelo
Reprinted from Computing Reviews, © 2007 ACM, http://www.reviews.com

http://www.reviews.com

58 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

MAY
OSBC (Open Source Business
Conference)
May 22-23, 2007
San Francisco, California
http://www.osbc.com/live/13/

O’Reilly Where 2.0 Conference
May 29-30, 2007
San Jose, California
http://conferences.oreillynet.com/
where2007/

JUNE
Tech·Ed
June 4-8, 2007
Orlando, Florida
http://www.microsoft.com/events/
teched2007/default.mspx

Apple WWDC (Worldwide
Developers Conference)
June 11-15, 2007
San Francisco, California
http://developer.apple.com/wwdc/

Workshop on Experimental
Computer Science
June 13-14, 2007
San Diego, California
http://www.cs.huji.ac.il/~feit/exp/

Usenix Annual Technical Conference
June 17-22, 2007
Santa Clara, California
http://www.usenix.org/events/
usenix07/

Better Software Conference and Expo
June 18-21, 2007
Las Vegas, Nevada
http://www.sqe.com/
bettersoftwareconf/

BREW
June 20-22, 2007

San Diego, California
http://brew.qualcomm.com/brew/
brew_2007/

JULY
Web Design World
July 8-11, 2007
Seattle, Washington
http://www.ftponline.com/
conferences/webdesignworld/2007/
seattle/

IEEE International Conference
on Web Services
July 9-13, 2007
Salt Lake City, Utah
http://conferences.computer.org/
icws/2007/

CIO & CSO Business Continuity Forum
July 17-18, 2007
New York, New York
http://public.cxo.com/conferences/
index.html?conferenceID=6

Networkers at Cisco Live
July 22–26, 2007
Anaheim, California
http://www.cisco.com/web/learning/
le21/le34/networkers/nw07

OMG’s BPM Think Tank
July 23-25, 2007
Burlingame, California
http://www.omg.org/news/meetings/
ThinkTank/

O’Reilly Open Source Convention
July 23-27, 2007
Portland, Oregon
http://conferences.oreillynet.com/
os2007/

AUGUST
SIGGRAPH
August 5-9, 2007

San Diego, California
http://www.siggraph.org/s2007/
index.html

LinuxWorld
August 6-9, 2007
San Francisco, California
http://www.linuxworldexpo.com/
live/12/

Usenix Security Symposium
August 6-10, 2007
Boston, Massachusetts
http://www.usenix.org/
events/sec07/

Agile Conference
August 13-17, 2007
Washington, DC
http://www.agile2007.com/

SEPTEMBER
Embedded Systems Conference
September 18-21, 2007
Boston, Massachusetts
http://www.embedded.com/
esc/boston/

Gartner Master Data
Management Summit
September 19-21, 2007
Hollywood, Florida
http://www.gartner.com/it/page.
jsp?id=501889&tab=overview

The WiMAX World Conference
September 25-27, 2007
Chicago, Illinois
http://www.wimaxworld.com/

calendar
To announce

an event, e-mail

queue-ed@acm.org or

fax +1-212-944-1318

http://www.acm.org

CLASSIFIED
Epic Systems Corporation

Software
Developer

Epic builds multi-tier
enterprise software for
healthcare organizations
using a variety of
technologies. Your
goal is to manage large
amounts of data with
sub-second response
times and rock-solid
stability. Working on
a small team, you’ll
participate in all aspects
of the development
process, from meeting
customers and design
through implementation,
quality assurance, and
delivery. We bring
enhancements to the
market quickly, so you
will see your hard work
make a difference. To
qualify, you must have
a BS or MS in CS, Math
or a related field, and a
track record of academic
excellence.

Qualcomm CDMA
Technologies

Digital ASIC
Verification
Engineering Director

Direct teams of
engineers driven by
verification leads,
and define chip level
verification strategies.
Drive projects through
all phases until all goals
are met/exceeded.
Requirements: A
minimum of 12-15
years experience in
systems, digital ASIC
design and verification,
with at least 5-7
years focused on
functional verification,
3-5 years experience
in design, and 5+
years in engineering
management. Strong
operational experience
in managing digital
ASIC design verification
projects from start
to finish. Strong track
record of execution.

Business.com

Information Retrieval Engineer

Work as part of an elite team head quartered in Silicon
Valley to design and develop next generation search and
information retrieval applications.

Responsibilities

•�Evaluate and implement new algorithms for
information retrieval and extraction, machine
learning, and natural language processing

•�Design and develop products and systems capable of
discovering, extracting and manipulating web data for
use on the Business.com site and for network partners

•�Partner with counterpart in Product Management to
manage the development of all Information Retrieval
and Search systems

Skills/Qualifications

•�Information retrieval, machine learning, and
Web data mining.

•�3-5 yrs software development exp. in Java, C,
or C++, RDB’s

•�BS in computer science (or related) required,
MS preferred

•Experience with search engines is a strong plus

Please send resume or CV to: Staffing@Business.com

The Future of File Systems

The New Era of Web Development

Massive Multimedia

What’s Coming
in Queue

60 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

ACM QUEUE May/June 2007 61 more queue: www.acmqueue.com

Debate on Wiki’s accuracy has been growing since
the site launched. That has been the fate of all reference
works, as Diderot and Lavoisier will confirm. In any “live”
and growing corpus (Wiki now has more than 6 million
entries), some errors are inevitable. Facts do change, don’t
yer know? The problem is how to judge overall reliability
from the occasional headline-grabbing “disasters” (usually
malevolently planted by the disgruntled), which are un-
covered and, claim the pro-Wikimites, promptly cor-
rected.

As with our vast suppositories [sic] of software, how-
ever, the notion of “unknown bugs” and “undetected
bugs” looms as a Zen demon (if I can mix my creeds). Is
there an acceptable level of reliability? If so, can we assess
it from sampling? Do a thousand minor Wiki typos count
more than, say, an entry on Islam or a map of Africa
that may unintentionally provoke violence or threats
of violence? When experts disagree, should both sides be
represented with balanced word counts? Can the cranks
have their day on Wiki? Cranks may be tomorrow’s gurus.
The obvious paradox is that in the normal “look-up” situ-
ation, we seldom consult Wiki in the domains in which
we are reasonably knowledgeable. Maintaining accuracy
therefore calls for dedicated specialists with the time to
spare for regular and thorough vetting.

The volatility of online data remains a mixed curse/
blessing (see this column, April and July/August 2005,
ibid.). What was a major manual effort for editors of the
Great Soviet Encyclopedia as past heroes were “delisted” (or
“unentered”?) is now a few deft clicks away. A remarkable
case is reported where the Russian subscribers to the ency-
clopedia were co-opted into helping the State revisionists:
in 1953 they were sent a page entry on the Bering Strait
and asked to insert it after cutting out the same-size entry
on the disgraced Lavrentiy Beria—thus preserving the
pagination.3

Just as a thought experiment, imagine an order from
up high to eliminate the entry at STALIN, Joseph. “We
need exact 321-page in-situ replacement—any ideas?”
Back comes the nervous editor: “We find that STALLMAN,
Richard would fit alphabetically and even culturally. His
FSF supports our aims in bringing down Microsoft and
the other wicked capitalists who steal and sell People’s
software. But big problem, Boss—we are having trouble
covering Stallman in less than 400 pages.”

Back to Wiki’s weracity, and enter Larry Sanger. As
a disillusioned Wiki co-founder, his decision to set up a
rival online resource deserves our careful attention. Enter
Citizendium as the Wiki-killer! The choice of name is

hardly an encouraging sign, yet, I say, the more references
the better. Beware the man browsing one site. Although
Sanger expresses concern over the errors in Wikipedia,
his main beef is the underlying structure and ethos
that throws doubt on its ability to ensure reliability. He
calls the Wiki management community dysfunctional,
invoking the crushing term “Rigid Egalitarianism.” In
particular, he dislikes the freedom with which anony-
mous Wiki contributors with unproved credentials can
provide new and edit old information. Citizendium will
correct this loophole by applying strict control over who
does what and with transparent accountability. Just like
a “real” encyclopedia, you may say. Sanger’s team has

much ground to make up, and I wish them well. One
might add a sad note: Are we seeing another “damn good
cause” afflicted with a bad dose of the “schisms”?

If This Be Error...
Returning to the theme of reader cooperation, I offer a
brief, yet apposite example of a newly exposed, half-for-
gotten mis-forecast in the June 24, 1974, Science section
of Time magazine in which expert climatologists warned
of global cooling. The next Ice Age loometh, and one geo-
guru (University of Toronto, no less) was even more pre-
cise: “I don’t believe that the world’s present population
is sustainable if there are three years like 1972 in a row.”

Here are two examples of how higher marks qualify for
my Doryphoric Palme d’Or (recall that a doryphore is “one
who takes excessive delight in spotting small errors,”
where excessive and small remain undefined) when mis-
takes are published in authoritative texts.

First, Bill Bryson’s A Short History of Nearly Every-
thing (Broadway Books, 2003) is an excellent introduction
to the natural sciences for the laid-back laity (I’ve given
it as a prezzie to all my grandchildren), partly because
Bryson is a fine writer rather than a trained scientist.

Continued from page 64

curmudgeon

In any live and
growing corpus,
some errors
are inevitable.

62 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

He better appreciates the hurdles for those who failed
math and physics not through lack of wit but because
of poor presentation and motivation. However, he states
that “seven one-thousandths” is “0.007 percent” and re-
peats this deception by offering “six one-thousandths”
as “0.006 percent.” I hear the grumpy, unfair reaction:
How can we believe anything this Bryson tells us?

Second, because the author/editor/commentator
of God Created the Integers (Running Press, 2005)4 is
famed cosmologist Stephen Hawking, the reviewer, John
Stillwell (American Mathematical Monthly, Mathematical
Association of America, March 2007) can hardly resist a
smirk in finding several “more or less serious errors
together with other distinctly misleading statements.”
Hawking writes, “Riemann recognized that in spaces of
nonconstant curvature bodies may move about with-
out stretching” (page 820). This is a topic well within
the author’s domain of competence, yet my readers will
surely spot the mistake noted by Stillwell. The word non-
constant should be constant! Is this the Orwellian peak
of misspeak? For YES read NO? For FALSE read TRUE?
As with my love for Nelly Moorcroft. But reversed. My
declared constancy proved inconstant.

Proof that Hawking simply wrote carelessly is re-
vealed later on the same page where Riemann himself
(genuflect, genuflect) is quoted with the correct proposi-
tion (bodies can move without stretching in spaces of
constant curvature). Later, Hawking goes wrong again:
“Of course, space need not be flat, it need not even be
of constant curvature as it must be for the sum of angles
of a triangle to be constant.” Wrong or very misleading,
claims Stillwell. Constant curvature does not imply the
sum of angles are invariant! The very sphere (idealized)
most of us inhabit is constant curvature, but we all know
(wake up at the back) that angle-sums vary with area.
What Hawking should have said was that “zero curva-
ture” guarantees angle-sum invariance.

Jack Be Agile
I hope agile is still the in-vogue programmers’ paradigmat-
ic predicate. Writing a few months ahead of publication
has always been a hazard in our fair but unfairly volatile
trade. I see signs of the nimble overtaking the agile, pre-
sumably by changing lanes and ignoring the speed limits.

I know that Joshua E. Smith designed an XML-com-
patible language called Nimble in 1999, yet this name
seemed based on nimble as a folksy synonym for agile. No-
body sings, “Jack be agile, Jack be quick,” do they? But
can we expect Nimble programming to become a more
widely entrenched general concept crowned with the

accolade Methodology? Incidentally, wordsmiths will
notice that Nimble is billed not as XML-compatible or
XML-conforming but as XML-conformant. Readers are
invited to submit their definitions of these three terms
and explain how they might differ.

Title Theme
The financial consultants Deloitte splash the banner,

Seenogapsinyourbusinessthinking

proving, if proof were needed, that reading undelimited
“words” can be a pain. In fact, it can lead to dire ambigu-
ity as in “man’s laughter” and “manslaughter.” The com-
ic’s straight man described his sex life as “infrequent,” to
which Henny Youngman responded, “Is that one word
or two?” And how many see the connection between
“atone” and “at one?” Reader prizes for similar examples.

My collapsed, self-referential headline to this column,
“Alloneword,” is now embedded in computer newspeak,
and further borrowed for a rock band. It will be familiar
to all those who have ever had to dictate or speech-spell
their e-mail or Web addresses. That branch of mankind
must include all my readers and, indeed, a large, ever-
growing proportion of those who are wired into our
Brave New World of Web. (The participle wired remains
a quaint synonym for connected, even when that nir-
vana is achieved wirelessly.) Thus, we announce, “I’m
joethejollyblogger, alloneword, at discountmousepads,
alloneword, dot see-oh dot you-kay.”

By the way, don’t rush to register the confusing
domain alloneword. It’s been “took!” (http://www.
alloneword.org houses the illustrated Figures of Speech by
Mervyn Peake. Worth a visit).

Less worthwhile (I’m scarce able to mention it)
is http://www.twitter.com. Twitterers (or twits as I prefer
to call them) are a global community of underemployed
addicts with sub-blog attention spans. Once registered
(there don’t seem to be any tests for literacy or sanity),
twits can submit realtime biographical sound “bytes”
describing what they claim to be doing at that very
moment. On the bright side, the max allowed burst
of narcissism is 140 words per twitter. On the dark side,
you are invited to read what other twits are up to. My
entry dated “now”: “Just got out of bed. Marmite butty
as per usual. Logged into twitter.com. Slashing my wrists.
Bye-bye all.” Q

References
1. �Shakespeare, W. Merchant of Venice (act 1 scene

curmudgeon

ISSN: 1556-4665
Order Code: 158
Price: $40 Professional Member

$35 Student Member
$140 Non-Member
$15 Air Service (for residents

outside North America only)

P R O D U C T I N F O R M AT I O N

T O P L A C E A N O R D E R

Please contact ACM Member Services:

Phone: 1.800.342.6626 (U.S. and Canada)

+1.212.626.0500 (Global)

Fax: +1.212.944.1318
(Hours: 8:30am—4:30pm, Eastern Time)

Email: acmhelp@hq.acm.org
Mail: ACM Member Services

General Post Office
PO Box 30777
New York, NY 10087-0777 USA

www.acm.org/pubs/taas AD27

ACM is Pleased to Announce a NEW Publication!
ACM Transactions on
Autonomous and Adaptive
Systems is a venue for high
quality research contributions
addressing foundational, engi-
neering, and technological
aspects of complex computing
systems exhibiting autonomous
and adaptive behavior. TAAS
encourages contributions
advancing the state of the art in
the understanding, develop-
ment, and control of such sys-
tems. Contributions are typically
based on sound theoretical
models and supported by proper
experimentations/validations.

ORDER TODAY!

Advancing Computing as a Science & Profession

http://www.acm.org/pubs/taas

64 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

T
hree years ago, to the very tick, my first Curmudgeon
column appeared in ACM Queue to the rapturous,
one-handed claps of the silent majority. Since then

my essays have alternated intermittently with those of
other grumpy contributors. With this issue (muffled
drumroll), I’m proud to announce a Gore-like climate
change in the regime that will redefine the shallow
roots of ACJ (agile computer journalism, of which more
anon). The astute ACM Queue Management (yes, there
is such—you really must read the opening pages of this
magazine!) has offered me the chance to go solo. For the
next few Queues, at least, I am crowned King Curmud-
geon, the Idi Amin of Moaners, nay, Supreme General
Secretary of the Complaining Party! “I am Sir Oracle,
and when I ope my lips, let no dog bark!”1 Or rather,
under the new dispensation, I command you to bark
back via curmudgeon@acmqueue.com with your own
pet peeves or counter-moans, which I promise to print
if printable (subject to as light an editing as the Law
dictates).

I also plan to pose posers and ask FUQs (frequently
unanswered questions), as was my wont in the Unix
Review Devil’s Advocate columns of yore (1984-2000). As
then, huge, literally invaluable prizes are offered for your
answers and selected responses that meet my unpub-
lished “Rules & Regulations.” Suffice it to say that the
customary bribes are encouraged; friends and relations
enjoy traditional nepotistic advantages (in the old days
my mother inevitably won the white Rolls-Royce convert-
ible); and tedious accuracy scores lower than cunning
disinformation. An ongoing challenge goes out to readers
who encounter risible misprints and howlers in the com-
puter literature, not excluding my own usually deliberate
mishtakes.

Any errors you detect will be judged against the
expected authority and inerrancy of the source. Thus,
the many marketeering deviations from the untrampled
snow-white truth will seldom rate highly unless, say,
Gates or Jobs drops a real whopper. I allow new retrospec-
tive findings of false prophecies, but not the well-worn
ones: at one end we have the quite plausible 1947 pre-
diction by T. J. Watson (three IBM computers will more

than meet the world’s
needs) and, at the other,
the less plausible Bill
Gates (“640K ought to
be enough for anybody,”

1981), which reflected the sad fact that IBM PC designers
spurned the larger, linear-address space of the Motorola
MC68000 microprocessor in favor of the Intel 8088.
Bill later topped this faux pas: “The Internet? We are
not interested in it” (1993). He also made several other
ill-timed predictions about OS/2 (optimism unjustified)
and Java (pessimism unjustified), but I’m loath to cast
bricks: back in 1942 I swore undying love to a certain
Nelly Moorcroft in a Liverpool jigger (back alley) while
the Nazi bombs were falling...but I digress.

A particular source from which mistakes are sought
is the much-cited Wikipedia. Wiki, as in Caesar’s Weni,
Widi, Wiki,2 has arrived, looked around, and conquered.
It has reached the top 10 in the most-visited site list, a
remarkable achievement for a noncommercial project
started in 2001.

Wikipedia, and the Web/Internet generally, received
glowing praise from UK Education Secretary Alan John-
son as “an incredible source for good in education” for
both teachers and pupils. “Wikipedia,” he told a School-
teachers’ Union conference in April, “enables anybody
to access information which was once the preserve only
of those who could afford the subscription to Encyclopae-
dia Britannica and could spend the time necessary to navi-
gate its maze of indexes and content pages.” He’s correct
about the cost but rather out of date on the “maze,” since
the Britannica is now available online with the usual
search and hyperlink features to replace the chore of
heavy page turning. Predictably, some teachers groaned at
the Wiki endorsement, having suffered from the increas-
ingly blatant plagiarism by students innocently unable
to distinguish fact from opinion and deliberate distortion.
Cartoons show children boasting A levels in new subjects
called “Cut and Paste” and “Drag and Drop.” Well, I sup-
pose they are modern skills to be honed and rewarded.
Forget the content, dig the layout!

Alloneword

Stan Kelly-Bootle, Author

curmudgeon

Errors,

deceptions,

and ambiguity

Continued on page 61

http://www.techexcel.com

Embed Caché. Attract big companies
with your breakthrough scalability.

When you embed Caché in your applications, they become more valuable. Caché dramatically
improves speed and scalability while decreasing hardware and administration requirements. This
innovative object database runs SQL queries faster than relational databases.
And with InterSystems’ Unified Data Architecture™ technology, Caché elimi-
nates the need for object-relational mapping. Which means Caché doesn’t just
speed up the performance of applications, it also accelerates their development.
Caché is available for Unix, Linux, Windows, Mac OS X, and OpenVMS – and it also supports
MultiValue development. Caché is deployed in more than 100,000 systems ranging from two
to over 50,000 users. Embed our innovations, enrich your applications.

Download a free, fully functional, no-time-limit copy of Caché, or request it on CD, at InterSystems.com/Cache24S

© 2007 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 4-07 ValCache24 Queue

Make
Applications

More
Valuable

http://www.intersystems.com/cache248

