
Polling Sucks
So what should we do instead?
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Should we use XMPP? What about AMQP? What about plain old HTTP push? Should it be peer-
to-peer? Intermediated? Disintermediated?



Messaging
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The answer is banal: Use messaging. The internet is all about the two aspects of messaging: 
resources, and state transfer. Modern systems like XMPP and AMQP as well as older systems 
like SMTP, NNTP and UUCP focus on the state transfer; FTP and HTTP focus more on the 
resources themselves. Recent approaches like ReST are all about finding a perfect balance 
point between resources and communication. In this talk I’m going to highlight the split 
between messaging fabric and messaging applications, show a couple of ways that RabbitMQ 
can be used as a component of interesting distributed applications, and then see if I can 
convince you that there are worse places to start than HTTP for building an internet-scale 
messaging fabric.



Fabric

• Addressing

• Authentication & Authorisation

• Point-to-point

• Best-effort, positive acknowledgement

• Push vs. Pull

• Symmetric

• Syntax
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So, to address this split between the fabric and the application. The fabric is all about getting 
information on a best-effort basis from point to point in the network. This might sound like 
messaging, but it’s not: the difference is that the transfer of information at this level is 
stateless, with idempotent, state-transferring operations the rule, where messaging is 
stateful. Consider IP compared to TCP: IP simply relays packets statelessly; it’s the TCP 
endpoints that update their own state in response to received IP packets. IP then is a fabric 
for TCP’s application.



Application

• Trust & Responsibility

• Reliable delivery (“exactly once”)

• Relaying, Filtering, Buffering, Queueing

• Multi-hop; middleboxes

• Management + Monitoring

• Actors, Methods and Events

• Semantics
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Applications, from the point of view of this split of messaging into its components, are the 
parts of the system that hold mutable state. Applications in a distributed system have 
contracts with each other: for instance, an SMTP server takes responsibility for a message 
when it sends back a 250 reply code. As another example, TCP endpoints take responsibility 
for received segments by acknowledging them. Applications are also where domain-specific 
logic starts to become visible: for example, within the mailing-list manager Mailman, delivery 
of a received message to the whole subscriber list is a domain concern that the underlying 
SMTP network is unaware of.



Traditional View

Message Broker

Publishing 
Application

Consuming 
Application

Messaging Library Messaging Library

Network

Trust?

5Thursday, 9 April 2009

The traditional view of MOM, Middleware Oriented Messaging, has the queues and relays as 
services that are subordinate to the producers and consumers of messages. This is fine up to 
a point; it starts to look a bit strange when you realise that you want to be able to trust the 
middleman as a peer, allowing it to make its own decisions about the messages you send to 
it as a first-class part of your distributed application.



Queueing/Relaying 
Application

Revised View

Messaging Library

Publishing 
Application

Consuming 
Application
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So the way we’re starting to look at things has the broker -- the relays, exchanges, buffers 
and queues, as well as their management and monitoring -- as a first-class peer in each 
distributed application. RabbitMQ’s purpose is to be a first-rate implementation of a broker, 
no matter what transport you use to communicate with it.



Exploring RabbitMQ
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Toy Twitter

• Running example: A twitter-a-like using 
AMQP

• AMQP’s asymmetric bindings great for 
asymmetric follow!

• One exchange for things you send

• One queue for things to read

• One binding per follow

Trendy!!!
Not Chat!!!
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Toy Twitter

Alice Bob

Jane

Alice Bob

JaneJohn
John

User’s agent
User’s exchange User’s queue

Binding = Follow

RabbitMQ
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Introduce AMQP concepts implemented by RabbitMQ. Map these to the toy twitter example.



Toy Twitter

Alice Bob

Jane

Alice Bob

JaneJohn
John

“Hi”

RabbitMQ
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Toy Twitter

Alice Bob

Jane

Alice Bob

JaneJohn
John

“Hi”
“Hi”

RabbitMQ
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In Detail

AMQP Transport

RabbitMQ

Alice Bob

JaneJohn

AMQP Model
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By default, RabbitMQ is configured with just the AMQP transport available.



AMQP + STOMP

AMQP
Transport

RabbitMQ

Alice Bob

JaneJohn

AMQP Model

STOMP
Transport
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Adding in a STOMP adapter is a straightforward process. Once this is done, clients can 
interact with the AMQP model -- the exchanges and queues -- using either protocol. STOMP 
doesn’t let you configure the broker, though; we’re considering defining an extension, but 
for now use AMQP.



AMQP + XMPP

AMQP 
Transport

RabbitMQ

XMPP Adapter

ejabberd

bob@sales.example.com

alice@hr.example.com

alicetweets@broker.example.com
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Rabbit has an experimental XMPP gateway, where RabbitMQ is embedded in ejabberd. Each 
exchange within the broker is given an XMPP JID. When XMPP users in the wider XMPP 
network add a RabbitMQ exchange as a contact, a private queue is created for the remote 
user (unless one already exists!) and a binding between the exchange and the private queue 
is set up. The “resource” part of the JID is interpreted as the AMQP routing key and binding 
pattern. When remote users indicate that they are online via presence, a consumer is started, 
which sends them the messages from their private queue. When they’re offline, the queue 
buffers messages for them. Now, this is quite a raw interface to exchange and queue 
functionality: it doesn’t feel very twitter-like!



Rabbiter

AMQP 
Transport

RabbitMQ

rabbiter@example.com

ejabberd

bob@sales.example.com

alice@hr.example.com
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Which brings us on to a thing called Rabbiter, which we built about a year ago as an 
experiment. It’s our toy twitter-a-like, embedded in ejabberd just like the generic XMPP 
RabbitMQ gateway, but with a single JID as the user interface. Backing the JID is a bot that 
automates the resource management for you, and relays messages both to and from the 
RabbitMQ broker. The internal exchanges and queues are not exposed as JIDs.



Embedded RabbitMQ

AMQP 
Transport

RabbitMQ

Application code

AMQP 
Transport

RabbitMQ
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AMQP 
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Explain the three styles of embedding, and talk about the Erlang client and what it can do for 
you. OTP’s applications structure an Erlang VM instance.



Internet Messaging
Pushing polling to the edges
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So having briefly explored some of the ways RabbitMQ can take part in a distributed 
application, I’d like to talk a bit about designing an Internet-scale messaging system, with a 
special focus on HTTP. Questions about the previous segment?



• Fabric

• Point-to-point transport protocol

• Distributed objects/actors

• Applications: Messaging system

• send()

• subscribe(), unsubscribe()

Architecture
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The architecture of the system should reflect the split between the fabric and the application. 
The way I see it is as a three-layered setup: stateless point-to-point messaging; a distributed 
object or actor system; and finally, messaging primitives like relays and queues as 
applications on top of the other two layers.



Point-to-Point

• Fidelity

• checksums

• binary content

• message delimiters

• Best-effort, with acknowledgements

• Asynchronous
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Best-effort: at most once, at least once, but not exactly once.
Acknowledgements: acceptance, rejection, error, ...
Asynchronous because we can build any other interaction pattern on top of that.



Distributed Objects

• Addressing & Symmetry

• Authentication & Authorization

• Operations & Events

20Thursday, 9 April 2009

Operations *and* events. Events are a missing piece in descriptions of object-oriented 
systems, but were there almost from the start as a library feature.



Messaging System

• Responsibility transfer (acknowledgement) 
and Retransmission

• Subscription and Filtering

• Sources

• Sinks

• Relays and Buffers (both source and sink)
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HTTP as Fabric?
• Checksums: from TCP

• Binary content: entity 
bodies are binary

• Message delimiters: 
content-length or 
chunked

• Best-effort: from TCP; 
acks: HTTP responses

• Asynchronous: hmmm

• Addressing: URLs

• Symmetry: rHTTP

• Authentication & 
Authorization: yes; also 
capabilities!

• Operations & Events: 
requesting and 
responding role for 
HTTP POST, 
respectively
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Posting links instead of posting content: matches common patterns like link sharing via 
Twitter, Delicious etc. HTTP effortlessly switches between push and pull.



Binary Acks Async Addr Auth
Ops, 

Events

XMPP

AMQP

SMTP

No No Yes Yes Maybe Yes

Yes Yes Yes No Local Yes

No Yes Hmm Yes No No

Other Possibilities
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Compensating: XMPP has presence...



Capabilities - CReST

• No global authority

• HATEOAS

• Secure names

• unguessable URLs

• Revokable, delegatable

• Object cap, meta cap
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Reverse HTTP

• “Remote CGI”

• Talk to a Point-Of-Attachment (POA)

• Claim a piece of URL-space

• Receive requests from POA

• Send replies to POA
Equal rights for HTTP clients!
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On the wire

• HTTP “Upgrade” to rHTTP (“PTTH”)

• http://www.ietf.org/internet-drafts/draft-
lentczner-rhttp-00.txt

• Long-poll for requests; POST replies

• http://www.reversehttp.net/

• http://wiki.secondlife.com/wiki/
Reverse_HTTP#COMET_Fallback
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http://www.reversehttp.net
http://www.reversehttp.net
http://wiki.secondlife.com/wiki/Reverse_HTTP#
http://wiki.secondlife.com/wiki/Reverse_HTTP#
http://wiki.secondlife.com/wiki/Reverse_HTTP#
http://wiki.secondlife.com/wiki/Reverse_HTTP#


Reverse HTTP Demo
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The End.
http://www.rabbitmq.com/how
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