
Polling Sucks
So what should we do instead?

1Thursday, 9 April 2009

Should we use XMPP? What about AMQP? What about plain old HTTP push? Should it be peer-
to-peer? Intermediated? Disintermediated?



Messaging

2Thursday, 9 April 2009

The answer is banal: Use messaging. The internet is all about the two aspects of messaging: 
resources, and state transfer. Modern systems like XMPP and AMQP as well as older systems 
like SMTP, NNTP and UUCP focus on the state transfer; FTP and HTTP focus more on the 
resources themselves. Recent approaches like ReST are all about finding a perfect balance 
point between resources and communication. In this talk I’m going to highlight the split 
between messaging fabric and messaging applications, show a couple of ways that RabbitMQ 
can be used as a component of interesting distributed applications, and then see if I can 
convince you that there are worse places to start than HTTP for building an internet-scale 
messaging fabric.



Fabric

• Addressing

• Authentication & Authorisation

• Point-to-point

• Best-effort, positive acknowledgement

• Push vs. Pull

• Symmetric

• Syntax

3Thursday, 9 April 2009

So, to address this split between the fabric and the application. The fabric is all about getting 
information on a best-effort basis from point to point in the network. This might sound like 
messaging, but it’s not: the difference is that the transfer of information at this level is 
stateless, with idempotent, state-transferring operations the rule, where messaging is 
stateful. Consider IP compared to TCP: IP simply relays packets statelessly; it’s the TCP 
endpoints that update their own state in response to received IP packets. IP then is a fabric 
for TCP’s application.



Application

• Trust & Responsibility

• Reliable delivery (“exactly once”)

• Relaying, Filtering, Buffering, Queueing

• Multi-hop; middleboxes

• Management + Monitoring

• Actors, Methods and Events

• Semantics

4Thursday, 9 April 2009

Applications, from the point of view of this split of messaging into its components, are the 
parts of the system that hold mutable state. Applications in a distributed system have 
contracts with each other: for instance, an SMTP server takes responsibility for a message 
when it sends back a 250 reply code. As another example, TCP endpoints take responsibility 
for received segments by acknowledging them. Applications are also where domain-specific 
logic starts to become visible: for example, within the mailing-list manager Mailman, delivery 
of a received message to the whole subscriber list is a domain concern that the underlying 
SMTP network is unaware of.



Traditional View

Message Broker

Publishing 
Application

Consuming 
Application

Messaging Library Messaging Library

Network

Trust?

5Thursday, 9 April 2009

The traditional view of MOM, Middleware Oriented Messaging, has the queues and relays as 
services that are subordinate to the producers and consumers of messages. This is fine up to 
a point; it starts to look a bit strange when you realise that you want to be able to trust the 
middleman as a peer, allowing it to make its own decisions about the messages you send to 
it as a first-class part of your distributed application.



Queueing/Relaying 
Application

Revised View

Messaging Library

Publishing 
Application

Consuming 
Application

Messaging Library Messaging Library

Network

Trust.

6Thursday, 9 April 2009

So the way we’re starting to look at things has the broker -- the relays, exchanges, buffers 
and queues, as well as their management and monitoring -- as a first-class peer in each 
distributed application. RabbitMQ’s purpose is to be a first-rate implementation of a broker, 
no matter what transport you use to communicate with it.



Exploring RabbitMQ

7Thursday, 9 April 2009



Toy Twitter

• Running example: A twitter-a-like using 
AMQP

• AMQP’s asymmetric bindings great for 
asymmetric follow!

• One exchange for things you send

• One queue for things to read

• One binding per follow

Trendy!!!
Not Chat!!!

8Thursday, 9 April 2009



Toy Twitter

Alice Bob

Jane

Alice Bob

JaneJohn
John

User’s agent
User’s exchange User’s queue

Binding = Follow

RabbitMQ

9Thursday, 9 April 2009

Introduce AMQP concepts implemented by RabbitMQ. Map these to the toy twitter example.



Toy Twitter

Alice Bob

Jane

Alice Bob

JaneJohn
John

“Hi”

RabbitMQ

10Thursday, 9 April 2009



Toy Twitter

Alice Bob

Jane

Alice Bob

JaneJohn
John

“Hi”
“Hi”

RabbitMQ

11Thursday, 9 April 2009



In Detail

AMQP Transport

RabbitMQ

Alice Bob

JaneJohn

AMQP Model

12Thursday, 9 April 2009

By default, RabbitMQ is configured with just the AMQP transport available.



AMQP + STOMP

AMQP
Transport

RabbitMQ

Alice Bob

JaneJohn

AMQP Model

STOMP
Transport

13Thursday, 9 April 2009

Adding in a STOMP adapter is a straightforward process. Once this is done, clients can 
interact with the AMQP model -- the exchanges and queues -- using either protocol. STOMP 
doesn’t let you configure the broker, though; we’re considering defining an extension, but 
for now use AMQP.



AMQP + XMPP

AMQP 
Transport

RabbitMQ

XMPP Adapter

ejabberd

bob@sales.example.com

alice@hr.example.com

alicetweets@broker.example.com

14Thursday, 9 April 2009

Rabbit has an experimental XMPP gateway, where RabbitMQ is embedded in ejabberd. Each 
exchange within the broker is given an XMPP JID. When XMPP users in the wider XMPP 
network add a RabbitMQ exchange as a contact, a private queue is created for the remote 
user (unless one already exists!) and a binding between the exchange and the private queue 
is set up. The “resource” part of the JID is interpreted as the AMQP routing key and binding 
pattern. When remote users indicate that they are online via presence, a consumer is started, 
which sends them the messages from their private queue. When they’re offline, the queue 
buffers messages for them. Now, this is quite a raw interface to exchange and queue 
functionality: it doesn’t feel very twitter-like!



Rabbiter

AMQP 
Transport

RabbitMQ

rabbiter@example.com

ejabberd

bob@sales.example.com

alice@hr.example.com

15Thursday, 9 April 2009

Which brings us on to a thing called Rabbiter, which we built about a year ago as an 
experiment. It’s our toy twitter-a-like, embedded in ejabberd just like the generic XMPP 
RabbitMQ gateway, but with a single JID as the user interface. Backing the JID is a bot that 
automates the resource management for you, and relays messages both to and from the 
RabbitMQ broker. The internal exchanges and queues are not exposed as JIDs.



Embedded RabbitMQ

AMQP 
Transport

RabbitMQ

Application code

AMQP 
Transport

RabbitMQ

Application code

Erlang Client

AMQP 
Transport

RabbitMQ

Application code

Erlang Client

No client “Direct” client “Network” client

16Thursday, 9 April 2009

Explain the three styles of embedding, and talk about the Erlang client and what it can do for 
you. OTP’s applications structure an Erlang VM instance.



Internet Messaging
Pushing polling to the edges

17Thursday, 9 April 2009

So having briefly explored some of the ways RabbitMQ can take part in a distributed 
application, I’d like to talk a bit about designing an Internet-scale messaging system, with a 
special focus on HTTP. Questions about the previous segment?



• Fabric

• Point-to-point transport protocol

• Distributed objects/actors

• Applications: Messaging system

• send()

• subscribe(), unsubscribe()

Architecture

18Thursday, 9 April 2009

The architecture of the system should reflect the split between the fabric and the application. 
The way I see it is as a three-layered setup: stateless point-to-point messaging; a distributed 
object or actor system; and finally, messaging primitives like relays and queues as 
applications on top of the other two layers.



Point-to-Point

• Fidelity

• checksums

• binary content

• message delimiters

• Best-effort, with acknowledgements

• Asynchronous

19Thursday, 9 April 2009

Best-effort: at most once, at least once, but not exactly once.
Acknowledgements: acceptance, rejection, error, ...
Asynchronous because we can build any other interaction pattern on top of that.



Distributed Objects

• Addressing & Symmetry

• Authentication & Authorization

• Operations & Events

20Thursday, 9 April 2009

Operations *and* events. Events are a missing piece in descriptions of object-oriented 
systems, but were there almost from the start as a library feature.



Messaging System

• Responsibility transfer (acknowledgement) 
and Retransmission

• Subscription and Filtering

• Sources

• Sinks

• Relays and Buffers (both source and sink)

21Thursday, 9 April 2009



HTTP as Fabric?
• Checksums: from TCP

• Binary content: entity 
bodies are binary

• Message delimiters: 
content-length or 
chunked

• Best-effort: from TCP; 
acks: HTTP responses

• Asynchronous: hmmm

• Addressing: URLs

• Symmetry: rHTTP

• Authentication & 
Authorization: yes; also 
capabilities!

• Operations & Events: 
requesting and 
responding role for 
HTTP POST, 
respectively

22Thursday, 9 April 2009

Posting links instead of posting content: matches common patterns like link sharing via 
Twitter, Delicious etc. HTTP effortlessly switches between push and pull.



Binary Acks Async Addr Auth
Ops, 

Events

XMPP

AMQP

SMTP

No No Yes Yes Maybe Yes

Yes Yes Yes No Local Yes

No Yes Hmm Yes No No

Other Possibilities

23Thursday, 9 April 2009

Compensating: XMPP has presence...



Capabilities - CReST

• No global authority

• HATEOAS

• Secure names

• unguessable URLs

• Revokable, delegatable

• Object cap, meta cap

24Thursday, 9 April 2009



Reverse HTTP

• “Remote CGI”

• Talk to a Point-Of-Attachment (POA)

• Claim a piece of URL-space

• Receive requests from POA

• Send replies to POA
Equal rights for HTTP clients!

25Thursday, 9 April 2009



On the wire

• HTTP “Upgrade” to rHTTP (“PTTH”)

• http://www.ietf.org/internet-drafts/draft-
lentczner-rhttp-00.txt

• Long-poll for requests; POST replies

• http://www.reversehttp.net/

• http://wiki.secondlife.com/wiki/
Reverse_HTTP#COMET_Fallback

26Thursday, 9 April 2009

http://www.reversehttp.net
http://www.reversehttp.net
http://wiki.secondlife.com/wiki/Reverse_HTTP#
http://wiki.secondlife.com/wiki/Reverse_HTTP#
http://wiki.secondlife.com/wiki/Reverse_HTTP#
http://wiki.secondlife.com/wiki/Reverse_HTTP#


Reverse HTTP Demo

27Thursday, 9 April 2009



The End.
http://www.rabbitmq.com/how

28Thursday, 9 April 2009


